7.3 We use a `for` loop to traverse the array until `p` points to the target:

```cpp
float* duplicate(float* p[], int n)
{
    float* const b = new float[n];
    for (int i = 0; i < n; i++)
        b[i] = *p[i];
    return b;
}
```

```cpp
void print(float[], int);
void print(float*[], int);
```

```cpp
int main()
{
    float a[8] = {44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5};
    print(a, 8);
    float* p[8];
    for (int i = 0; i < 8; i++)
        p[i] = &a[i];  // p[i] points to a[i]
    print(p, 8);
    float* const b = duplicate(p, 8);
    print(b, 8);
}
```

7.4 This function, named `riemann()`, is similar to the `sum()` function in Example 7.18. Its first argument is a pointer to a function that has one `double` argument and returns a `double`. In this test run, we pass it (a pointer to) the `cube()` function. The other three arguments are the boundaries `a` and `b` of the interval `[a, b]` over which the integration is being performed and the number `n` of subintervals to be used in the sum. The actual Riemann sum is the sum of the areas of the `n` rectangles based on these subintervals whose heights are given by the function being integrated:

```cpp
double riemann(double (*)(double), double, double, int);
```

```cpp
double cube(double);
```

```cpp
int main()
{
    cout << riemann(cube, 0, 2, 10) << endl;
    cout << riemann(cube, 0, 2, 100) << endl;
    cout << riemann(cube, 0, 2, 1000) << endl;
    cout << riemann(cube, 0, 2, 10000) << endl;
}
```

// Returns \[f(a)h + f(a+h)h + f(a+2h)h + \ldots + f(b-h)h \],
// where \(h = (b-a)/n \):
double riemann(double (*pf)(double t), double a, double b, int n)
{ double s = 0, h = (b-a)/n, x;
 int i;
 for (x = a, i = 0; i < n; x += h, i++)
 s += (*pf)(x);
 return s*h;
}

double cube(double t)
{ return t*t*t;
}

In this test run, we are integrating the function \(y = x^3 \) over the interval \([0, 2]\). By elementary calculus, the value of this integral is 4.0. The call \(\text{riemann}(\text{cube}, 0, 2, 10) \) approximates this integral using 10 subintervals, obtaining 3.24. The call \(\text{riemann}(\text{cube}, 0, 2, 100) \) approximates the integral using 100 subintervals, obtaining 3.9204. These sums get closer to their limit 4.0 as \(n \) increases. With 10,000 subintervals, the Riemann sum is 3.9992. Note that the only significant difference between this \text{riemann()} function and the \text{sum()} function in Example 7.18 is that the sum is multiplied by the subinterval width \(h \) before being returned.

7.5 This \text{derivative()} function is similar to the \text{sum()} function in Example 7.18, except that it implements the formula for the numerical derivative instead. It has three arguments: a pointer to the function \(f \), the \(x \) value, and the tolerance \(h \). In this test run, we pass it (pointers to) the \text{cube()} function and the \text{sqrt()} function.

```cpp
#include <iostream>
#include <cmath>
using namespace std;

double derivative(double (*)(double), double, double);
double cube(double t)
{ return t*t*t;
}

int main()
{ cout << derivative(cube, 1, 0.1) << endl;
    cout << derivative(cube, 1, 0.01) << endl;
    cout << derivative(cube, 1, 0.001) << endl;
    cout << derivative(sqrt, 1, 0.1) << endl;
    cout << derivative(sqrt, 1, 0.01) << endl;
    cout << derivative(sqrt, 1, 0.001) << endl;
}

// Returns an approximation to the derivative \( f'(x) \):
double derivative(double (*pf)(double t), double x, double h)
{ return ((*pf)(x+h) - (*pf)(x-h))/(2*h);
}
```
The derivative of the \texttt{cube()} function x^3 is $3x^2$, and its value at $x = 1$ is 3, so the numerical derivative should be close to 3.0 for small h. Similarly, the derivative of the \texttt{sqrt()} function \sqrt{x} is $1/(2\sqrt{x})$, and its value at $x = 1$ is 1/2, so its numerical derivative should be close to 0.5 for small h.

7.6 The pointer \texttt{pmax} is used to locate the maximum \texttt{float}. It is initialized to have the same value as \texttt{p[0]} which points to the first \texttt{float}. Then inside the for loop, the \texttt{float} to which \texttt{p[i]} points is compared to the \texttt{float} to which \texttt{pmax} points, and \texttt{pmax} is updated to point to the larger \texttt{float} when it is detected. So when the loop terminates, \texttt{pmax} points to the largest \texttt{float}:

\begin{verbatim}
float* max(float* p[], int n)
{ float* pmax = p[0];
 for (int i = 1; i < n; i++)
 if (*p[i] > *pmax) pmax = p[i];
 return pmax;
}
\end{verbatim}

void print(float [], int);
void print(float* [], int);

int main()
{ float a[8] = {44.4, 77.7, 22.2, 88.8, 66.6, 33.3, 99.9, 55.5};
 print(a, 8);
 float* p[8];
 for (int i = 0; i < 8; i++)
 p[i] = &a[i]; // p[i] points to a[i]
 print(p, 8);
 float* m = max(p, 8);
 cout << m << ", " << *m << endl;
}

Here we have two (overloaded) \texttt{print()} functions: one to print the array of pointers, and one to print the \texttt{floats} to which they point. After initializing and printing the array \texttt{a}, we define the array \texttt{p} and initialize its elements to point to the elements of \texttt{a}. The call \texttt{print(p, 8)} verifies that \texttt{p} provides \texttt{indirect access} to \texttt{a}. Finally, the pointer \texttt{m} is declared and initialized with the address returned by the \texttt{max()} function. The last output verifies that \texttt{m} does indeed point to the largest \texttt{float} among those accessed by \texttt{p}.

\textbf{Solutions to Problems 7.7-7.24 are available on-line at projectEuclid.net.}