Chapter 4: Sorting

Diagram showing the process of sorting a list of numbers.
What We’ll Do

- Quick Sort
- Lower bound on runtimes for comparison based sort
- Radix and Bucket sort
Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4

7 9 → 7 9

2 → 2

9 → 9
Quick-Sort

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide**: pick a random element x (called *pivot*) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- **Recur**: sort L and G
- **Conquer**: join L, E and G
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x

- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $O(1)$ time

- Thus, the partition step of quick-sort takes $O(n)$ time

Algorithm $\text{partition}(S, p)$

Input sequence S, position p of pivot

Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

L, E, $G \leftarrow$ empty sequences

$x \leftarrow S.\text{remove}(p)$

while $\neg S.\text{isEmpty}()$

 $y \leftarrow S.\text{remove}(S.\text{first}())$

 if $y < x$
 $L.\text{insertLast}(y)$
 else if $y = x$
 $E.\text{insertLast}(y)$
 else $\{ y > x \}$
 $G.\text{insertLast}(y)$

return L, E, G
Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
Execution Example

Pivot selection

7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9

7 2 9 4
2 4 7 9

3 8 6 1
1 3 8 6

9 4 4 9

9 9 4 4

2 2

3 3

8 8
Execution Example (cont.)

Partition, recursive call, pivot selection

7 2 9 4 3 7 6 1
2 4 3 1 2 4 7 9
3 8 6 1 1 3 8 6
9 4 9 9 4 4
2 2
3 3
8 8
Execution Example (cont.)

Partition, recursive call, base case

7 2 9 4 3 7 6 1
1 2 3 4 6 7 8 9

2 4 3 1
2 4 7

3 8 6 1
1 3 8 6

9 4
4 9

9 9
4 4

3 3
8 8
Execution Example (cont.)

Recursive call, ..., base case, join

![Sorting tree diagram]

- Initial array: 7 2 9 4 3 7 6 1
- Recursive calls: 2 4 3 1 → 1 2 3 4
 - 1 → 1
 - 4 3 → 3 4
 - 9 9
 - 4 → 4
- Base case and join: 3 8 6 1 1 3 8 6

Execution Example (cont.)

Recursive call, pivot selection

```
7 2 9 4 3 7 6 1
1 2 3 4 6 7 8 9
```

```
2 4 3 1 → 1 2 3 4
```

```
1 → 1
```

```
4 3 → 3 4
```

```
9 9
4 → 4
```

```
7 9 7
```

```
8 8
9 9
```

```
3
4
```
Execution Example (cont.)

- Partition, ..., recursive call, base case

```
7 2 9 4 3 7 6 1
```

```
2 4 3 1 → 1 2 3 4
```

```
4 3 → 3 4
```

```
9 → 9
```

```
1 2 3 4 6 7 8 9
```

```
7 9 7 1 1 3 8 6
```

```
1 4 3
```

```
3 4
```

```
9
```

```
4
```

```
4
```

```
9
```

```
9
```

```
4
```

```
4
```

```
9
```

```
9
```
Execution Example (cont.)

Join, join

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

9 → 9

4 → 4

8 → 8

9 → 9
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.
- One of L and G has size $n - 1$ and the other has size 0.
- The running time is proportional to the sum:

$$n + (n - 1) + \ldots + 2 + 1$$

- Thus, the worst-case running time of quick-sort is $O(n^2)$.

<table>
<thead>
<tr>
<th>depth</th>
<th>time</th>
<th>number of comparisons in partition step</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$n - 1$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$n - 1$</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Expected Running Time

Consider a recursive call of quick-sort on a sequence of size n

- **Good call**: the sizes of L and G are each less than $3s/4$
- **Bad call**: one of L and G has size greater than $3s/4$

A call is good with probability $1/2$

- $1/2$ of the possible pivots cause good calls:
Expected Running Time, Part 2

- **Probabilistic Fact:** The expected number of coin tosses required in order to get \(k \) heads is \(2^k \)
- For a node of depth \(i \), we expect
 - \(i/2 \) ancestors are good calls
 - The size of the input sequence for the current call is at most \((3/4)^{i/2} n \)
 - Since each good call shrinks size to at most 3/4 of previous size

Therefore, we have
- For a node of depth \(2 \log_{4/3} n \), the expected input size is one
- The expected height of the quick-sort tree is \(O(\log n) \)
- The amount of work done at the nodes of the same depth is \(O(n) \)
- Thus, the expected running time of quick-sort is \(O(n \log n) \)

\[
\left(\frac{3}{4}\right)^i n = 1 \quad \Rightarrow \quad i = 2 \log_{\frac{4}{3}} n
\]

Spring 2014
Sorting Lower Bound
Comparison-Based Sorting (§ 4.4)

Many sorting algorithms are comparison based.
- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort a set S of n elements, $x_1, x_2, ..., x_n$.

Assume that the x_i are distinct, which is not a restriction
Counting Comparisons

Let us just count comparisons then.

First, we can map any comparison based sorting algorithm to a decision tree as follows:

- Let the root node of the tree correspond to the first comparison, \((x_i < x_j)\), that occurs in the algorithm.
- The outcome of the comparison is either yes or no.
- If yes we proceed to another comparison, say \(x_a < x_b\)? We let this comparison correspond to the left child of the root.
- If no we proceed to the comparison \(x_c < x_d\)? We let this comparison correspond to the right child of the root.
- Each of those comparisons can be either yes or no...
The Decision Tree

Each possible permutation of the set S will cause the sorting algorithm to execute a sequence of comparisons, effectively traversing a path in the tree from the root to some external node.
Paths Represent Permutations

Fact: Each external node v in the tree can represent the sequence of comparisons for exactly one permutation of S

- If P_1 and P_2 are different permutations, then there is at least one pair x_i, x_j with x_i before x_j in P_1 and x_i after x_j in P_2
- For both P_1 and P_2 to end up at v, this means every decision made along the way resulted in the exact same outcome.
 - We have a decision tree, so no cycles!
- This cannot occur if the sorting algorithm behaves correctly, because in one permutation x_i started before x_j and in the other their order was reversed (remember, they cannot be equal)
The height of this decision tree is a lower bound on the running time.
Every possible input permutation must lead to a separate leaf output (by previous slide).
There are $n!$ permutations, so there are $n!$ leaves.
Since there are $n!=1\times2\times\ldots\times n$ leaves, the height is at least $\log (n!)$.

Decision Tree Height

```
  x_i < x_j ?
  x_a < x_b ?  x_c < x_d ?
  x_e < x_f ?  x_k < x_l ?  x_m < x_o ?  x_p < x_q ?
  . .  .
  n!
```
The Lower Bound

- Any comparison-based sorting algorithms takes at least \(\log(n!) \) time.
- Therefore, any such algorithm takes time at least

\[
\log(n!) \geq \log \left(\frac{n}{2} \right)^{n/2} = \left(\frac{n}{2} \right) \log \left(\frac{n}{2} \right).
\]

- Since there are at least \(n/2 \) terms larger than \(n/2 \) in \(n! \).

- That is, any comparison-based sorting algorithm must run no faster than \(O(n \log n) \) time in the worst case.
Bucket-Sort and Radix-Sort

![Diagram showing the process of Bucket-Sort and Radix-Sort with labeled buckets and elements.]

The diagram illustrates the allocation of elements into buckets based on their values, preparing them for sorting. The buckets are labeled with elements such as 1, e, 3, a, 3, b, 7, d, 7, g, and 7, e, which are distributed across the buckets 0 through 9.
Bucket-Sort (§ 4.5.1)

- Let be \(S \) be a sequence of \(n \) (key, element) items with keys in the range \([0, N - 1]\)
- Bucket-sort uses the keys as indices into an auxiliary array \(B \) of sequences (buckets)

 Phase 1: Empty sequence \(S \) by moving each item \((k, o)\) into its bucket \(B[k] \)

 Phase 2: For \(i = 0, \ldots, N - 1 \), move the items of bucket \(B[i] \) to the end of sequence \(S \)

- Analysis:
 - Phase 1 takes \(O(n) \) time
 - Phase 2 takes \(O(n + N) \) time
 - Bucket-sort takes \(O(n + N) \) time

Algorithm \(\text{bucketSort}(S, N) \)

- **Input** sequence \(S \) of (key, element) items with keys in the range \([0, N - 1]\)
- **Output** sequence \(S \) sorted by increasing keys

\(B \leftarrow \) array of \(N \) empty sequences

\[\text{while } \neg S.\text{isEmpty}() \]
\[f \leftarrow S.\text{first}() \]
\[(k, o) \leftarrow S.\text{remove}(f) \]
\[B[k].\text{insertLast}((k, o)) \]

for \(i \leftarrow 0 \) to \(N - 1 \)

\[\text{while } \neg B[i].\text{isEmpty}() \]
\[f \leftarrow B[i].\text{first}() \]
\[(k, o) \leftarrow B[i].\text{remove}(f) \]
\[S.\text{insertLast}((k, o)) \]
Example

Key range $[0, 9]$
Properties and Extensions

Key-type Property
- The keys are used as indices into an array and cannot be arbitrary objects
- No external comparator

Stable Sort Property
- The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions
- Integer keys in the range \([a, b]\)
 - Put item \((k, o)\) into bucket \(B[k - a]\)
- String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 - Sort \(D\) and compute the rank \(r(k)\) of each string \(k\) of \(D\) in the sorted sequence
 - Put item \((k, o)\) into bucket \(B[r(k)]\)
Lexicographic Order

A \(d \)-tuple is a sequence of \(d \) keys \((k_1, k_2, \ldots, k_d)\), where key \(k_i \) is said to be the \(i \)-th dimension of the tuple.

Example:
- The Cartesian coordinates of a point in space are a \(3 \)-tuple.

The lexicographic order of two \(d \)-tuples is recursively defined as follows:

\[
(x_1, x_2, \ldots, x_d) < (y_1, y_2, \ldots, y_d) \iff \left\{ \begin{array}{l}
x_1 < y_1 \\
x_1 = y_1 \land (x_2, \ldots, x_d) < (y_2, \ldots, y_d)
\end{array} \right.
\]

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.
Lexicographic-Sort

- Let C_i be the comparator that compares two tuples by their i-th dimension.
- Let $\text{stableSort}(S, C)$ be a stable sorting algorithm that uses comparator C.
- Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension.
- Lexicographic-sort runs in $O(dT(n))$ time, where $T(n)$ is the running time of stableSort.

Algorithm $\text{lexicographicSort}(S)$

Input sequence S of d-tuples
Output sequence S sorted in lexicographic order

for $i ← d$ downto 1
$\text{stableSort}(S, C_i)$

Example:

$$(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)$$

$$(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)$$

$$(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)$$

$$(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)$$
Radix-Sort (§ 4.5.2)

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension.
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, N-1]$.
- Radix-sort runs in time $O(d(n + N))$.

Algorithm `radixSort(S, N)`

Input sequence S of d-tuples such that $(0, \ldots, 0) \leq (x_1, \ldots, x_d)$ and $(x_1, \ldots, x_d) \leq (N-1, \ldots, N-1)$ for each tuple (x_1, \ldots, x_d) in S.

Output sequence S sorted in lexicographic order.

for $i \leftarrow d$ downto 1

`bucketSort(S, N)`
Radix-Sort for Binary Numbers

- Consider a sequence of n b-bit integers
 \[x = x_{b-1} \ldots x_1 x_0 \]
- We represent each element as a b-tuple of integers in the range $[0, 1]$ and apply radix-sort with $N = 2$
- This application of the radix-sort algorithm runs in $O(bn)$ time
- For example, we can sort a sequence of 32-bit integers in linear time

Algorithm $\text{binaryRadixSort}(S)$

Input sequence S of b-bit integers

Output sequence S sorted

replace each element x of S with the item $(0, x)$

for $i \leftarrow 0$ to $b - 1$
 replace the key k of each item (k, x) of S with bit x_i of x

$\text{bucketSort}(S, 2)$
Example

Sorting a sequence of 4-bit integers

1001 0010 1101 0001 1110
0010 1110 1001 1101 001
1101 1001 0001 0001 111
0001 1101 1001 0010 1110
1110 0001 1110 1101 1110