NP-Completeness
Outline

P and NP (§13.1)
- Definition of P
- Definition of NP
- Alternate definition of NP

NP-completeness (§13.2)
- Definition of NP-hard and NP-complete
- The Cook-Levin Theorem
More Outline

Some NP-complete problems (§13.3)
- Problem reduction
- SAT (and CNF-SAT and 3SAT)
- Vertex Cover
- Clique
- Hamiltonian Cycle
Back To NP-Completeness
Running Time Revisited

- Input size, n
 - To be exact, let n denote the number of bits in a nonunary encoding of the input
- All the polynomial-time algorithms studied so far in this course run in polynomial time using this definition of input size.
 - Exception: any pseudo-polynomial time algorithm
Dealing with Hard Problems

What to do when we find a problem that looks hard...

I couldn’t find a polynomial-time algorithm; I guess I’m too dumb.
Dealing with Hard Problems

Sometimes we can prove a strong lower bound... (but not usually)

I couldn’t find a polynomial-time algorithm, because no such algorithm exists!
Dealing with Hard Problems

NP-completeness let’s us show collectively that a problem is hard.

I couldn’t find a polynomial-time algorithm, but neither could all these other smart people.
Polynomial-Time Decision Problems

To simplify the notion of “hardness,” we will focus on the following:

- Polynomial-time as the cut-off for efficiency
- Decision problems: output is 1 or 0 (“yes” or “no”)
 - Examples:
 - Is a given circuit satisfiable?
 - Does a text T contain a pattern P?
 - Does an instance of 0/1 Knapsack have a solution with benefit at least K?
 - Does a graph G have an MST with weight at most K?
Problems and Languages

A language \(L \) is a set of strings defined over some alphabet \(\Sigma \)
- Don’t be fooled here: the key is that your “language” will be a binary encoding of a specific instance of a specific problem.

Every decision algorithm \(A \) defines a language \(L \)
- \(L \) is the set consisting of every string \(x \) such that \(A \) outputs “yes” on input \(x \).
- We say “\(A \) accepts \(x \)” in this case
 - Example: Euler tours.
 - An Euler tour of a directed graph is a cycle that visits all of the vertices in the graph only once (except for the initial vertex, which obviously is visited twice).
 - If \(A \) determines whether or not a given graph \(G \) has an Euler tour, then the language \(L \) for \(A \) is all graphs with Euler tours.
Problems and Languages

Note that saying an algorithm A defines a language L means that a string x is in L if and only if A outputs "yes" when fed string x.
A **complexity class** is a collection of languages

- P is the complexity class consisting of all languages that are accepted by **polynomial-time** algorithms

- This is a funny way of saying things, but necessary for rigor.

- Ex. If question is ``Does this graph have an Euler tour?``, and there is a polynomial time algorithm A that will say ``yes`` for all graphs that have Euler tours, then the language defined by A (which will include all strings representing graphs with Euler tours) is in P.

 - For those of us who feel comfortable with natural language: the problem of determining whether a graph has an Euler tour would be solvable in polynomial time.
A *complexity class* is a collection of languages. P is the complexity class consisting of all languages that are accepted by *polynomial-time* algorithms.

For each language L in P there is a polynomial-time decision algorithm A for L.

- If $n = |x|$, for x in L, then A runs in $p(n)$ time on input x.
- The function $p(n)$ is some polynomial.
The Complexity Class NP

- We say that an algorithm is non-deterministic if it uses the following operation:
 - Choose(b): chooses a bit b
 - Can be used to choose an entire string y (with |y| choices)

- We say that a non-deterministic algorithm A accepts a string x if there exists some sequence of choose operations that causes A to output “yes” on input x.

- NP is the complexity class consisting of all languages accepted by polynomial-time non-deterministic algorithms.
NP example

Problem: Decide if a graph has an MST of weight K or less

Algorithm:
1. Non-deterministically choose a set T of $n-1$ edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Testing takes $O(n+m)$ time, so this algorithm runs in polynomial time.
The Complexity Class NP

Alternate Definition

- We say that an algorithm B verifies the acceptance of a language L if and only if, for any x in L, there exists a certificate y such that B outputs “yes” on input (x,y).
 - The certificate might be, for example, the path that describes the Euler tour (if this is the problem being considered).
- NP is the complexity class consisting of all languages verified by polynomial-time algorithms.

- We know: P is a subset of NP.
- Major open question: P=NP?
- Most researchers believe that P and NP are different.
NP example (2)

Problem: Decide if a graph has an MST of weight K

Verification Algorithm:
1. Use as a certificate, y, a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Verification takes $O(n+m)$ time, so this algorithm runs in polynomial time.
Equivalence of the Two Definitions

Suppose A is a non-deterministic algorithm
- Let y be a certificate consisting of all the outcomes of the choose steps that A uses
- We can create a verification algorithm that uses y instead of A’s choose steps
- If A accepts on x, then there is a certificate y that allows us to verify this (namely, the choose steps A made)
- If A runs in polynomial-time, so does this verification algorithm

Suppose B is a verification algorithm
- Non-deterministically choose a certificate y
- Run B on y
- If B runs in polynomial-time, so does this non-deterministic algorithm
An Interesting Problem

A Boolean circuit is a circuit of AND, OR, and NOT gates; the CIRCUIT-SAT problem is to determine if there is an assignment of 0’s and 1’s to a circuit’s inputs so that the circuit outputs 1.
CIRCUIT-SAT is in NP

Non-deterministically choose a set of inputs and the outcome of every gate, then test each gate’s I/O.

Logic Gates:

- NOT
- OR
- AND

Inputs:
- 0
- 1

Output:
- 1
NP-Completeness

A problem (language) \(L \) is **NP-hard** if every problem in NP can be reduced to \(L \) in polynomial time.

That is, for each language \(M \) in NP, we can take an input \(x \) for \(M \), **transform** it in polynomial time to an input \(x' \) for \(L \) such that \(x \) is in \(M \) if and only if \(x' \) is in \(L \).

\(L \) is **NP-complete** if it’s in NP and is NP-hard.
Cook-Levin Theorem

- CIRCUIT-SAT is NP-complete.
 - We already showed it is in NP.

To prove it is NP-hard, we have to show that every language in NP can be reduced to it.
 - Let M be in NP, and let x be an input for M.
 - Let y be a certificate that allows us to verify membership in M in polynomial time, $p(n)$, by some algorithm D.
 - Let S be a circuit of size at most $O(p(n)^2)$ that simulates a computer (details omitted...)

\[\text{NP} \xrightarrow{\text{poly-time}} M \xrightarrow{\text{poly-time}} \text{CIRCUIT-SAT} \]
Cook-Levin Proof

We can build a circuit that simulates the verification of x’s membership in M using y.

- Let W be the working storage for D (including registers, such as program counter); let D be given in RAM “machine code.”
- Simulate $p(n)$ steps of D by replicating circuit S for each step of D. Only input: y.
- Circuit is satisfiable if and only if x is accepted by D with some certificate y.
- Total size is still polynomial: $O(p(n)^3)$.
Some Thoughts about P and NP

Belief: P is a proper subset of NP.
Implication: the NP-complete problems are the hardest in NP.
Why: Because if we could solve an NP-complete problem in polynomial time, we could solve every problem in NP in polynomial time.
That is, if an NP-complete problem is solvable in polynomial time, then P=NP.
Since so many people have attempted without success to find polynomial-time solutions to NP-complete problems, showing your problem is NP-complete is equivalent to showing that a lot of smart people have worked on your problem and found no polynomial-time algorithm.
Showing NP-Completeness
Problem Reduction

- A language M is polynomial-time reducible to a language L if an instance x for M can be transformed in polynomial time to an instance x' for L such that x is in M if and only if x' is in L.
 - Denote this by $M \rightarrow L$.

- A problem (language) L is **NP-hard** if every problem in NP is polynomial-time reducible to L.

- A problem (language) is **NP-complete** if it is in NP and it is NP-hard.

- CIRCUIT-SAT is NP-complete:
 - CIRCUIT-SAT is in NP
 - For every M in NP, $M \rightarrow$ CIRCUIT-SAT.
Problem Reduction

- A general problem \(M \) is polynomial-time reducible to a general problem \(L \) if an instance \(x \) of problem \(M \) can be transformed in polynomial time to an instance \(x' \) of problem \(L \) such that the solution to \(x \) is yes if and only if the solution to \(x' \) is yes.
 - Denote this by \(M \rightarrow L \).
- A problem (language) \(L \) is NP-hard if every problem in NP is polynomial-time reducible to \(L \).
- A problem (language) is NP-complete if it is in NP and it is NP-hard.
- CIRCUIT-SAT is NP-complete:
 - CIRCUIT-SAT is in NP
 - For every \(M \) in NP, \(M \rightarrow \) CIRCUIT-SAT.
Transitivity of Reducibility

- If A → B and B → C, then A → C.
 - An input x for A can be converted to x’ for B, such that x is in A if and only if x’ is in B. Likewise, for B to C.
 - Convert x’ into x’’ for C such that x’ is in B iff x’’ is in C.
 - Hence, if x is in A, x’ is in B, and x’’ is in C.
 - Likewise, if x’’ is in C, x’ is in B, and x is in A.
 - Thus, A → C, since polynomials are closed under composition.

- Types of reductions:
 - **Local replacement:** Show A → B by dividing an input to A into components and show how each component can be converted to a component for B.
 - **Component design:** Show A → B by building special components for an input of B that enforce properties needed for A, such as “choice” or “evaluate.”
A Boolean formula is a formula where the variables and operations are Boolean (0/1):

- \((a+b+\neg d+e)(\neg a+\neg c)(\neg b+c+d+e)(a+\neg c+\neg e)\)
- OR: +, AND: (times), NOT: \(\neg\)

SAT: Given a Boolean formula \(S\), is \(S\) satisfiable, that is, can we assign 0’s and 1’s to the variables so that \(S\) is 1 (“true”)?

- Easy to see that CNF-SAT is in NP:
 - Non-deterministically choose an assignment of 0’s and 1’s to the variables and then evaluate each clause. If they are all 1 (“true”), then the formula is satisfiable.
CNF-SAT is NP-complete

- Reduce CIRCUIT-SAT to CNF-SAT.
 - Given a Boolean circuit, make a variable for every input and gate.
 - Create a sub-formula for each gate, characterizing its effect. Form the formula as the output variable AND-ed with all these sub-formulas:
 - Example: $m((a+b)\leftrightarrow e)(c\leftrightarrow f)(d\leftrightarrow g)(e\leftrightarrow h)(ef\leftrightarrow i)\ldots$

The formula is satisfiable if and only if the Boolean circuit is satisfiable.
3SAT

- The SAT problem is still NP-complete even if the formula is a conjunction of disjuncts, that is, it is in conjunctive normal form (CNF).
- The SAT problem is still NP-complete even if it is in CNF and every clause has just 3 literals (a variable or its negation):
 - \((a+b+\neg d)(\neg a+\neg c+e)(\neg b+d+e)(a+\neg c+\neg e)\)
- Reduction from SAT (See §13.3.1).
Vertex Cover

- A vertex cover of graph $G=(V,E)$ is a subset W of V, such that, for every edge (a,b) in E, a is in W or b is in W.

- VERTEX-COVER: Given a graph G and an integer K, does G have a vertex cover of size at most K?

- VERTEX-COVER is in NP: Non-deterministically choose a subset W of size K and check that every edge is covered by W.
Vertex-Cover is NP-complete

Reduce 3SAT to VERTEX-COVER.

Let S be a Boolean formula in CNF with each clause having 3 literals.

For each variable x, create a node for x and $\neg x$, and connect these two:

For each clause $C_i = (a+b+c)$, create a triangle and connect the three nodes.
Vertex-Cover is NP-complete

Completing the construction

- Connect each literal in a clause triangle to its copy in a variable pair.
- E.g., for a clause $C_i = (\neg x + y + z)$

Let $n = \#$ of variables
Let $m = \#$ of clauses
Set $K = n + 2m$
Vertex-Cover is NP-complete

- Example: \((a+b+c)(\neg a+b+\neg c)(\neg b+\neg c+\neg d)\)
- Graph has vertex cover of size \(K=4+6=10\) iff formula is satisfiable.
Why? (satisfiable \Rightarrow cover)

- Suppose there is an assignment of Boolean values that satisfies S
- Build a subset of vertices that contains each literal that is assigned 1 by satisfying assignment
- For each clause, the satisfying assignment must assign one to at least one of the summands. Include the other two vertices in the vertex cover.
- The cover has size $n + 2m$ (as required).
Is What We Described a Cover?

- Each edge in a truth setting component is covered.
- Each edge in a clause satisfying component is covered.
- Two of three edges incident on a clause satisfying component is covered.
- An edge (incident to a clause satisfying component) not covered by a vertex in the component must be covered by a node in C labeled with a literal, since the corresponding literal is 1 (by how we chose the vertices to be covered in the clause satisfying components).
Why? (cover \(\Rightarrow\) satisfiable)

- Suppose there is a cover \(C\) with size at most \(n + 2m\)
- It must contain at least one vertex from each truth setting component, and two from each clause satisfying component, so size is at least \(n + 2m\) (so exactly that)
- So, one edge incident to any clause satisfying component is not covered by a vertex in the clause satisfying component. This edge must be covered by the other endpoint, which is labeled with a literal.
Why? (cover \Rightarrow satisfiable)

- We can associate the literal associated with this node 1 and each clause in S is satisfied, hence S is satisfied.
- Bottom line: S is satisfiable iff G has a vertex cover of size at most $n + 2m$.
- Bottom line 2: Vertex Cover is NP-Complete
Clique

- A **clique** of a graph $G=(V,E)$ is a subgraph C that is fully-connected (every pair in C has an edge).

- **CLIQUE**: Given a graph G and an integer K, is there a clique in G of size at least K?

 - **CLIQUE** is in **NP**: non-deterministically choose a subset C of size K and check that every pair in C has an edge in G.

This graph has a clique of size 5
CLIQUE is NP-Complete

- Reduction from VERTEX-COVER.
- A graph G has a vertex cover of size at most K if and only if its complement has a clique of size at least $n-K$.

![Graph G](image1)

![Graph G'](image2)
Some Other NP-Complete Problems

SET-COVER: Given a collection of m sets, are there K of these sets whose union is the same as the whole collection of m sets?

- NP-complete by reduction from VERTEX-COVER

SUBSET-SUM: Given a set of integers and a distinguished integer K, is there a subset of the integers that sums to K?

- NP-complete by reduction from VERTEX-COVER
Some Other NP-Complete Problems

- **0/1 Knapsack**: Given a collection of items with weights and benefits, is there a subset of weight at most W and benefit at least K?
 - NP-complete by reduction from SUBSET-SUM

- **Hamiltonian-Cycle**: Given an graph G, is there a cycle in G that visits each vertex exactly once?
 - NP-complete by reduction from VERTEX-COVER

- **Traveling Saleperson Tour**: Given a complete weighted graph G, is there a cycle that visits each vertex and has total cost at most K?
 - NP-complete by reduction from Hamiltonian-Cycle.
Approximation Algorithms
Outline and Reading

Approximation Algorithms for NP-Complete Problems (§13.4)
 - Approximation ratios
 - Polynomial-Time Approximation Schemes (§13.4.1)
 - 2-Approximation for Vertex Cover (§13.4.2)
 - 2-Approximation for TSP special case (§13.4.3)
 - Log n-Approximation for Set Cover (§13.4.4)
Approximation Ratios

Optimization Problems

- We have some problem instance x that has many feasible “solutions”.
- We are trying to minimize (or maximize) some cost function $c(S)$ for a “solution” S to x. For example,
 - Finding a minimum spanning tree of a graph
 - Finding a smallest vertex cover of a graph
 - Finding a smallest traveling salesman tour in a graph
Approximation Ratios

- An approximation produces a solution T
 - T is a k-approximation to the optimal solution OPT if $c(T)/c(OPT) \leq k$ (assuming a min. prob.; a maximization approximation would be the reverse)
A problem L has a **polynomial-time approximation scheme (PTAS)** if it has a polynomial-time $(1+\varepsilon)$-approximation algorithm, for any fixed $\varepsilon > 0$ (this value can appear in the running time).

$0/1$ Knapsack has a PTAS, with a running time that is $O(n^3/\varepsilon)$. Please see §13.4.1 in Goodrich-Tamassia for details.
Vertex Cover

- A **vertex cover** of graph $G=(V,E)$ is a subset W of V, such that, for every (a,b) in E, a is in W or b is in W.

- **OPT-VERTEX-COVER**: Given a graph G, find a vertex cover of G with smallest size.

- **OPT-VERTEX-COVER** is NP-hard.
A 2-Approximation for Vertex Cover

- Every chosen edge e has both ends in C
- But e must be covered by an optimal cover; hence, one end of e must be in OPT
- Thus, there is at most twice as many vertices in C as in OPT.
- That is, C is a 2-approx. of OPT
- Running time: $O(m)$

Algorithm $\text{VertexCoverApprox}(G)$

- **Input** graph G
- **Output** a vertex cover C for G

1. $C \leftarrow$ empty set
2. $H \leftarrow G$
3. while H has edges
 - $e \leftarrow H.\text{removeEdge}(H.\text{anEdge}())$
 - $v \leftarrow H.\text{origin}(e)$
 - $w \leftarrow H.\text{destination}(e)$
 - $C.\text{add}(v)$
 - $C.\text{add}(w)$
 - for each f incident to v or w
 - $H.\text{removeEdge}(f)$
4. return C
Special Case of the Traveling Salesperson Problem

OPT-TSP: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.

- **OPT-TSP** is NP-hard
- Special case: edge weights satisfy the triangle inequality (which is common in many applications):

 \[w(a,b) + w(b,c) \geq w(a,c) \]

![Diagram of a triangle with edge weights 5, 4, and 7]
A 2-Approximation for TSP
Special Case

Algorithm $\text{TSPApprox}(G)$

- **Input** weighted complete graph G, satisfying the triangle inequality
- **Output** a TSP tour T for G

1. $M \leftarrow$ a minimum spanning tree for G
2. $P \leftarrow$ an Euler tour traversal of M, starting at some vertex s
3. $T \leftarrow$ empty list
4. for each vertex v in P (in traversal order)
 - if this is v’s first appearance in P then
 - T.insertLast(v)
 - T.insertLast(s)
5. return T
A 2-Approximation for TSP

Special Case - Proof

- The optimal tour is a spanning tour; hence |M|≤|OPT|.
- The Euler tour \(P \) visits each edge of \(M \) twice; hence |P|=2|M|
- Each time we shortcut a vertex in the Euler Tour we will not increase the total length, by the triangle inequality \(w(a,b) + w(b,c) > w(a,c) \); hence, |T|≤|P|.
- Therefore, |T|≤|P|=2|M|≤2|OPT|

Output tour \(T \)
(at most the cost of \(P \))

Euler tour \(P \) of MST \(M \)
(twice the cost of \(M \))

Optimal tour \(OPT \)
(at least the cost of MST \(M \))
Set Cover

- **OPT-SET-COVER**: Given a collection of \(m \) sets, find the smallest number of them whose union is the same as the whole collection of \(m \) sets?
 - OPT-SET-COVER is NP-hard

- Greedy approach produces an \(O(\log n) \)-approximation algorithm. See §13.4.4 for details.

Algorithm \(\text{SetCoverApprox}(G) \)

Input a collection of sets \(S_1 \ldots S_m \)

Output a subcollection \(C \) with same union

\[
F \leftarrow \{S_1, S_2, \ldots, S_m\}
\]

\(C \leftarrow \) empty set

\(U \leftarrow \) union of \(S_1 \ldots S_m \)

while \(U \) is not empty

\[
S_i \leftarrow \text{set in } F \text{ with most elements in } U
\]

\(F.\text{remove}(S_i) \)

\(C.\text{add}(S_i) \)

Remove all elements in \(S_i \) from \(U \)

return \(C \)