Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
What We Want

A method for measuring, roughly, the cost (or speed) or executing an algorithm

Several potential methods

- Obvious one is measuring an implementation
- Another is counting instructions
Implementation

- Who implements it
 - And how do they do this?
- With what compiler? Using what settings?
- On whose hardware?
- Using whose clock?
- On what OS
 - Are other programs running? If not is this realistic?
- On what data sets?
 - Small number of data sets may not give good representation
 - Lots of data sets may not be practical
Counting Instructions

On what machine?
- RISC? CISC? Special Instructions (such as Intel MMX)?
- With what compiler?
 - Is it optimized for applications
- On what data?
 - Again large data sets versus few data sets.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Primitive Operations

Roughly, a primitive operation is one that can be performed in a constant number of steps that does not depend on the size of the input.

- Ex. Assume CPU can access arbitrary memory location in a single primitive operation.
Primitive Operations

- Assignment of variable
 - If assigning to array, two primitive ops (index into array, then write value)

- Comparing two numbers

- Basic algebraic operations
 - Addition, subtraction, multiplication, division

- This list is not exhaustive
Big-Oh Notation (§1.2)

Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that

$$f(n) \leq cg(n) \text{ for } n \geq n_0$$

Example: $2n + 10$ is $O(n)$

- $2n + 10 \leq cn$
- $(c - 2)n \geq 10$
- $n \geq 10/(c - 2)$
- Pick $c = 3$ and $n_0 = 10$
Big-Oh Example

Example: the function n^2 is not $O(n)$

- $n^2 \leq cn$
- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant
More Big-Oh Examples

- $7n-2$

 $7n-2$ is $O(n)$
 need $c > 0$ and $n_0 \geq 1$ such that $7n-2 \leq c \cdot n$ for $n \geq n_0$
 this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$

 $3n^3 + 20n^2 + 5$ is $O(n^3)$
 need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq c \cdot n^3$ for $n \geq n_0$
 this is true for $c = 4$ and $n_0 = 21$

- $3 \log n + \log \log n$

 $3 \log n + \log \log n$ is $O(\log n)$
 need $c > 0$ and $n_0 \geq 1$ such that $3 \log n + \log \log n \leq c \cdot \log n$ for $n \geq n_0$
 this is true for $c = 4$ and $n_0 = 2$
Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,
 1. Drop lower-order terms
 2. Drop constant factors

- Use the smallest possible class of functions
 - Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”

- Use the simplest expression of the class
 - Say “$3n + 5$ is $O(n)$” instead of “$3n + 5$ is $O(3n)$”
Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

- To perform the asymptotic analysis:
 - We find the **worst-case** number of primitive operations executed as a function of the input size.
 - Note we sometimes discuss average time.
 - We express this function with big-Oh notation.

- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
Relatives of Big-Oh

- **big-Omega**
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

- **big-Theta**
 - $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that $c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n)$ for $n \geq n_0$

- **little-o**
 - $f(n)$ is $o(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$

- **little-omega**
 - $f(n)$ is $\omega(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$
Intuition for Asymptotic Notation

Big-Oh
- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically **less than or equal** to $g(n)$

big-Omega
- $f(n)$ is $Ω(g(n))$ if $f(n)$ is asymptotically **greater than or equal** to $g(n)$

big-Theta
- $f(n)$ is $Θ(g(n))$ if $f(n)$ is asymptotically **equal** to $g(n)$

little-o
- $f(n)$ is $o(g(n))$ if $f(n)$ is asymptotically **strictly less** than $g(n)$

little-omega
- $f(n)$ is $ω(g(n))$ if $f(n)$ is asymptotically **strictly greater** than $g(n)$
Example Uses of the Relatives of Big-Oh

- **5n^2 is Ω(n^2)**

 f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n_0 ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n_0

 let c = 5 and n_0 = 1

- **5n^2 is Ω(n)**

 f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n_0 ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n_0

 let c = 1 and n_0 = 1

- **5n^2 is ω(n)**

 f(n) is ω(g(n)) if, for any constant c > 0, there is an integer constant n_0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n_0

 need 5n_0^2 ≥ c•n_0 → given c, the n_0 that satisfies this is n_0 ≥ c/5 ≥ 0
More Rules

Know which functions get butts kicked by which functions (and why!)
- I.e, look at Theorem 1.7 on p. 15 in text

Be sure to look at Section 1.2.3 (carefully)
- In particular, you should realize why the constants in the definition of Big-O notations are not really a factor!