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Abstract. We show that a �nite graph that is the inverse limit with a single

surjective upper semi-continuous set valued function f : [0, 1] → 2[0,1] is either

an arc or a simple triod. It is not known if there is such a simple triod.

1. Introduction

LetM be a closed subset of [0, 1]×[0, 1], then lim
←
M , the generalized inverse limit

ofM , is de�ned as lim
←
M = {(x1, x2, . . .) ∈ Π∞i=1[0, 1] | (xi, xi−1) ∈M for i ∈ {2, 3, . . .}}.

IfM is the graph of a continuous function f : [0, 1]→ [0, 1] then this is a traditional

inverse limit and the result is an arc-like or chainable continuum. Traditional in-

verse limits have been used to study the structure of continua, to construct continua

with complicated structures, and to study the dynamics of the bonding functions.

In recent years a number of papers have been written about generalized inverse

limits starting with Mahavier in [5]. In economic modeling and other areas the dy-

namics of set valued functions de�ned on an interval are important. Understanding

generalized inverse limits can contribute to the study of dynamics in part because

the space of forward orbits of a set valued function is the same as the inverse limit

of the inverse of the function. We are just beginning to understand generalized

inverse limits and it is not yet clear what sorts of continua can be obtained in

this way. The generalized inverse limit with a closed subset of [0, 1] × [0, 1] will

be compact but not necessarily connected, even for a connected set M . Examples

have been given in [5][2] [3][7] and several other papers, of generalized inverse limits

with closed subsets of [0, 1] × [0, 1] that are homeomorphic to various dendrites, a

harmonic fan, in�nite dimensional continua, and even a Cantor set [4]. Of course

an arc is the inverse limit with M equal to the diagonal in [0, 1]× [0, 1], but other

than that no example has been found of a closed subset of [0, 1]× [0, 1] whose gen-

eralized inverse limit is a �nite graph. There are a few continua that are known

not to be obtainable as such a generalized inverse limit, for example any n-cell with

n > 1 [6], and a simple closed curve [1]. Until now the simple closed curve was
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the only one dimensional example. We will show that no �nite graph except an

arc and possibly a simple triod can be the inverse limit with a single surjective

upper semi-continuous bonding function from [0, 1] to the nonempty closed subsets

of [0, 1].

2. Notation and Preliminary Results

A continuum is a compact connected metric space. A subcontinuum A of a

continuum X is a free arc if A is an arc such that the boundary of A in X is

contained in the set of endpoints of A, and a continuum X is a �nite graph if X

is the union of a �nite number of free arcs. A simple triod is an acyclic �nite

graph with three endpoints. The Hilbert cube is the product Π∞i=1[0, 1] with met-

ric given by d(x, y) =
∑∞
i=1

|πi(x)−πi(y)|
2i where πi : Π∞i=1[0, 1] → [0, 1] is de�ned

by πi(x) = πi((x1, x2, x3, . . .)) = xi. The function π1,n : Π∞i=1[0, 1] → Πn
i=1[0, 1]

is de�ned by π1,n(x) = π1,n((x1, x2, x3, . . .)) = (x1, . . . xn). The binary operation

⊕ : Πn
i=1[0, 1] × Π∞i=1[0, 1] → Π∞i=1[0, 1] is de�ned by (x1, . . . , xn) ⊕ (y1, y2, . . .) =

(x1, . . . , xn, y1, y2, . . .). The continuous function σ : Π∞i=1[0, 1] → Π∞i=1[0, 1] is de-

�ned by σ((x1, x2, x3, . . .)) = (x2, x3, . . .).

A set valued function f : X → 2Y into the nonempty closed subsets of Y is

upper semi-continuous (usc) if for each open set V ⊂ Y the set {x : f(x) ⊂ V } is
an open set in X. A set valued function f : X → 2Y is usc if and only if the graph

of f , Γ(f) = {(x, y) | y ∈ f(x)}, is a closed subset of X×Y [3, Theorem 2.1 p. 120].

A set valued function f : X → 2Y will be called surjective if for each y ∈ Y there is

a point x ∈ X such that y ∈ f(x). The inverse limit of the sequence of set valued

functions {fi}, where fi : Xi+1 → 2Xi is denoted lim
←
fi, and is de�ned to be the set

of all (x1, x2, x3, . . .) ∈ Π∞i=1Xi such that xi ∈ fi(xi+1) for each i. The functions fi

are called bonding maps. The study of inverse limits with upper semi-continuous

set valued functions began with Mahavier in [5] and Mahavier and Ingram in [3].

In this paper we are considering inverse limits with a single surjective upper semi-

continuous bonding function f : [0, 1]→ 2[0,1] which will be denoted lim
←
f . It is easy

to see that σ(lim
←
f) = lim

←
f . The results in this paper are based on an examination

of the orbits of open sets in lim
←
f under the shift map σ. A technique used by Illanes

in [1] to show that a simple closed curve is not the inverse limit of a single surjective

set valued bonding map on [0, 1] will be used repeatedly. It involves the observation

that if x, y ∈ lim
←
f such that πn(x) = π1(y), then π1,n−1(x)⊕ y ∈ lim

←
f , and if n is

large then π1,n−1(x)⊕ y is a point that is close to x and σn−1(π1,n−1(x)⊕ y) = y.

We will exploit this simple idea using uniformizations to determine the orbits of

open subsets under the shift map.

Note that if a simple closed curve is embedded in [0, 1] × [0, 1] so that it is the

graph of a surjective set valued function f1, and fi is the identity function for
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i > 1, then lim
←
fi is a simple closed curve. Since something like this can be done for

any continuum embeddable in [0, 1]n, restricting the question to what continua are

obtainable as an inverse limit with a single set valued bonding function is necessary.

We will also restrict our attention to surjective bonding maps. Its easy to see

that if f : [0, 1] → 2[0,1] is not necessarily surjective and lim
←
f is a continuum then

πi(lim←
f) is an interval for each i. Moreover if (x1, x2, . . .) ∈ lim

←
f , then (x2, x3, . . .) ∈

lim
←
f . Also if (x1, x2, . . .) ∈ lim

←
f , then there is a y ∈ f(x1) so that (y, x1, x2, . . .) ∈

lim
←
f and σ((y, x1, x2, . . .)) = ((x1, x2, . . .)). Therefore σ(lim

←
f) = lim

←
f . Thus

πi(lim←
f) = π1(lim

←
f) = [a, b] for some a, b ∈ [0, 1]. For convenience we will as-

sume a = 0 and b = 1. Note also that we do assume that f(x) is not empty for each

x ∈ [0, 1]. Consider the set M =
{

(x, y) ∈ [0, 12 ]× [0, 1] | y ∈
{
x, 1− x, 34 −

1
2x
}}

.

It is easy to see that (x1, x2, x3, . . .) ∈ lim
←
f if and only if (x2, x1) ∈M and xj = x2

for each j ∈ {3, 4, 5, . . .}. Thus the simple triod M is homeomorphic to lim
←
M .

Essentially the �rst bonding function is not the same as the rest of the bonding

functions, and we can eliminate this sort of example with the assumption that f(x)

is a nonempty closed subset of [0, 1] for each x ∈ [0, 1].

The functions α and β in the following lemma form what we call a discrete

uniformization of the functions f and g. For an elementary and elegant proof of

the following lemma see [1]. For each n ∈ N , let Sn = {0, . . . , n}.

Lemma 1. Let f, g : [0, 1] → [0, 1] be continuous functions such that f(0) = 0 =

g(0) and f(1) = 1 = g(1), and let δ > 0. Then there exist n ∈ N and functions

α, β : Sn → [0, 1] such that f ◦ α = g ◦ β , α(0) = 0 = β(0), α(n) = 1 = β(n) and,

for each i ∈ {0, . . . , n− 1}, |α(i+ 1)− α(i)| < δ and |β(i+ 1)− β(i)| < δ .

We will also use a variation of Lemma 1 also proved in [1] .

Lemma 2. Let f, g : [0, 1]→ [0, 1] be continuous functions such that f(0) = 0 and

f(1) = 1, and let δ > 0. Then there exist n ∈ N and functions α, β : Sn → [0, 1]

such that f ◦α = g◦β, β(0) < δ, 1−β(n) < δ and, for each i ∈ {0, . . . , n− 1}, |α(i+

1)− α(i)| < δ and |β(i+ 1)− β(i)| < δ .

The remaining results in this section are technical facts about �nite graphs that

come up in the proofs of the main results in the next section.

Lemma 3. If G is a �nite graph with metric d, and g : [0, 1] → B is a homeo-

morphism onto an arc B in G, then there is a δ > 0 such that if C is a continuum

in G with d(C, g(0)) < δ, d(C, g(1)) < δ, and d(c,B) < δ for each c ∈ C, then

g([ 14 ,
3
4 ]) ⊂ C.

Proof. Suppose G is a �nite graph with metric d, and g : [0, 1] → B is a homeo-

morphism onto an arc B in G. Since G is a �nite graph, there is an open set U in
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G containing the arc B such that U is arc connected and acyclic. There is a δ1 > 0

such that if x ∈ G and d(x,B) < δ1 then x ∈ U . Since U \ g([ 14 ,
3
4 ] has �nitely

many components, the component of U \ g([ 14 ,
3
4 ]) that contains g(0) is open in G.

Therefore there is a δ2 > 0 such that if x ∈ G and d(g(o), x) < δ2 then x is in the

component of U \ g([ 14 ,
3
4 ]) that contains g(0). Similarly there is a δ3 > 0 such that

if x ∈ G and d(g(1), x) < δ3 then x is in the component of U \g([ 14 ,
3
4 ]) that contains

g(1). Let δ = min {δ1, δ2, δ3}. Suppose C is an continuum in G with d(C, g(0)) < δ,

d(C, g(1)) < δ, and d(c,B) < δ for each c ∈ C. Then C ⊂ U , and since the compo-

nents of U \ g([ 14 ,
3
4 ]) are arc connected there is an arc D1 ⊂ U \ g([ 14 ,

3
4 ]) such that

g(0) ∈ D1 and C∩D1 6= ∅ and there is an arc D2 ⊂ U \g([ 14 ,
3
4 ]) such that g(1) ∈ D2

and C ∩D2 6= ∅. Since U is acyclic g([ 14 ,
3
4 ]) ⊂ C ∪D1 ∪D2. So g([ 14 ,

3
4 ]) ⊂ C. �

Lemma 4. Suppose G is a �nite graph with metric d, E and F are connected closed

subsets of G and {εi} is a sequence of positive numbers converging to 0 such that

for each i ∈ N there is an integer mi ∈ N and a function Ψi : Smi → G such that

for each j ∈ {0, . . . ,mi − 1}, d(Ψi(j + 1),Ψi(j)) < εi and there exist j, k ∈ Smi

such that d(Ψi(j), E) < εi, and d(Ψi(k), F ) < εi. Then the closure of
∞
∪
i=1

mi∪
j=0

Ψi(j)

contains an arc with one endpoint in E and the other endpoint in F .

Proof. Let W be the closure of
∞
∪
i=1

mi∪
j=0

Ψi(j). Assume that if D is an arc in G

with one endpoint in E and the other endpoint in F then D is not contained in W .

There are only �nitely many arcs {D1, . . . , Dk} in G that are irreducible between

E and F . For each j ∈ {1, . . . , k} there is open set Uj ⊂ Dj \W such that Uj

is homeomorphic to (0, 1) and G has order two at each point in Uj . Since G is a

�nite graph,
k
∪
j=1

Uj separates G into a �nite number of components with E and F

in di�erent components. Let δ > 0 be less than the smallest distance between any

two components of G \
k
∪
j=1

Uj . Choose i ∈ N such that εi <
δ
2 . Then

mi∪
j=0

Ψi(j) is

contained in a single component of G \
k
∪
j=1

Uj and that component must contain an

arc which is irreducible between E and F , which is a contradiction. So W contains

an arc with one endpoint in E and the other endpoint in F . �

3. Main Results

Throughout this section assume f : [0, 1] → 2[0,1] is surjective upper semi-

continuous set valued function and G = lim
←
f is a non degenerate �nite graph.

Let P0 be a point in G such that π1(P0) = 0 , and let P1 be a point in G such that

π1(P1) = 1. Let A be an arc in G with endpoints P0 and P1. A Type I point in G

is a point x such that there exists an N ∈ N such that σn(x) ∈ A for each n ≥ N .

A type II point in G is a point that is not Type I. A point x in G has a Type I
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neighborhood if x is contained in an open set O such that there exists an N ∈ N
such that σn(O) ⊂ A for each n ≥ N .

Lemma 5. Every point of G that is not an endpoint of G has a Type I neighborhood.

Proof. Let x be a point of G that is not an endpoint of G. There is an arc B in

G and a homeomorphism g : [0, 1] → B onto the arc B such that g( 1
2 ) = x and G

has order two at each point of B \
{
g( 1

2 )
}
. According to Lemma 3 there is a δ1 > 0

such that if C is an arc in G with d(C, g(0)) < δ1, d(C, g(1)) < δ1, and d(c,B) < δ1

for each c ∈ C, then g([ 14 ,
3
4 ]) ⊂ C. Let E and F be closed arcs in G with diameter

less than δ1 such that g(0) is contained in the interior of E, and g(1) is contained

in the interior of F , and such that (E ∪ F ) ∩ g([ 14 ,
3
4 ]) = ∅. There is a δ2 > 0 such

that if x ∈ G and d(x, g(0)) < δ2 then x ∈ E, and if y ∈ G and d(y, g(1)) < δ2 then

y ∈ F . Let δ = min {δ1, δ2}.
Let N ∈ N such that 1

2N
< δ

2 . Let f : [0, 1]→ A be a homeomorphism such that

f(0) = P0 and f(1) = P1. For n ≥ N , πn◦g : [0, 1]→ [0, 1] and π1◦f : [0, 1]→ [0, 1]

are continuous functions and π1 ◦ f(0) = 0 and π1 ◦ f(1) = 1. Let ε > 0 such

that ε < δ. Since f and g are uniformly continuous there exists ε′ > 0 such

that if a, b ∈ [0, 1] and |b − a| < ε′ then d(f(a), f(b)) < ε
2 and d(g(a), g(b)) < ε

2 .

According to Lemma 2 there is an m ∈ N and functions α, β : Sm → [0, 1] such

that π1 ◦ f ◦ α = πn ◦ g ◦ β, β(0) < ε′, 1− β(m) < ε′, and |α(i+ 1)− α(i)| < ε′ and

|β(i+ 1)− β(i)| < ε′ for each i ∈ {0, . . . ,m− 1}.
Now de�ne Ψ : Sm → G by Ψ(i) = π1,n−1(g ◦ β(i)) ⊕ f ◦ α(i) for each i ∈

{0, . . . ,m}. Then for each i ∈ {0, . . . ,m}, Ψ(i) ∈ G, σn−1(Ψ(i)) = f ◦ α(i) ∈
A, and d(Ψ(i), B) ≤ d(Ψ(i), g ◦ β(i)) < 1

2N
< δ. For each i ∈ {0, . . . ,m− 1},

d(Ψ(i + 1),Ψ(i)) < d(g ◦ α(i + 1), g ◦ α(i)) + d(f ◦ β(i + 1), f ◦ β(i)) < ε
2 + ε

2 < ε.

Also d(Ψ(0), g(0)) < d(Ψ(0), g ◦β(0)) + d(g ◦β(0), g(0)) < 1
2n + ε

2 <
δ
2 + ε

2 < δ, and

similarly d(Ψ(m), g(1)) < δ. Therefore Ψ(0) ∈ E and Ψ(m) ∈ F .
Let {εi} be a sequence of positive numbers less than δ and converging to 0.

Construct Ψi : Smi → G as above for each εi, leaving n and δ �xed, and let

W be the closure of
∞
∪
i=1

mi∪
j=0

Ψi(j). By Lemma 4, W contains an arc W ′ such

that W ′ ∩ E 6= ∅ and W ′ ∩ F 6= ∅. Let C = W ′ ∪ E ∪ F . For each i and

each j in the domain of Ψi, d(Ψi(j), B) < δ ≤ δ1 . Therefore for each x ∈ C,

d(x,B) < δ1. It follows from Lemma 3 and the choice of δ1 that g([ 14 ,
3
4 ]) ⊂ C.

Since (E ∪F )∩ g([ 14 ,
3
4 ]) = ∅, g([ 14 ,

3
4 ]) ⊂W ′ ⊂W . Now since for each i and each j

in the domain of Ψi, σ
n−1(Ψi(j)) ∈ A and since σn−1 is continuous and A is closed,

σn−1(W ) ⊂ A. Therefore σn−1(g([ 14 ,
3
4 ])) ⊂ A. The choice of n ≥ N was arbitrary

so σn(g([ 14 ,
3
4 ])) ⊂ A for each n ≥ N − 1.

For each x ∈ G that is not an endpoint of G there is a �nite collection of arcs

{B1, . . . , Bk} in G such that for each i ∈ {1, . . . , k} there is a homeomorphism
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gi : [0, 1] → Bi onto the arc Bi such that gi(
1
2 ) = x and G has order two at each

point of Bi \ gi( 1
2 ), and x is contained in the interior of

k
∪
i=1
gi([

1
4 ,

3
4 ]). There is an

N ∈ N such that if n ≥ N , then σn(
k
∪
i=1
gi([

1
4 ,

3
4 ])) ⊂ A. Therefore

k
∪
i=1
gi([

1
4 ,

3
4 ]) is a

Type I neighborhood of x. �

Theorem 6. If f : [0, 1] → 2[0,1] is a surjective upper semi-continuous function

such that lim
←
f is a �nite graph, then lim

←
f must have at least one endpoint.

Proof. Suppose G is a non degenerate �nite graph with no endpoints and G is

the inverse limit of a surjective upper semi-continuous function f : [0, 1] → 2[0,1].

According to Lemma 5 there is a cover of G consisting of Type I neighborhoods.

Since G is compact there is an n ∈ N such that σn(G) is contained in an arc. Since

σn(G) = G, this is a contradiction. �

Lemma 7. G has a �nite number of Type II points, and for each Type II point x

the following are true:

i. There is an n ∈ N such that σn(x) = x.

ii. If i ∈ N and y ∈ G such that πi(x) = πi(y) then π1,i(x) = π1,i(y).

iii. If n ∈ N then for each ε > 0 there is an δ > 0 such that if y ∈ G and

|πn(x)− πn(y)| < δ then
n

Σ
i=1

|πi(x)−πi(y)|
2i < ε.

Proof. From Lemma 5 it follows that every non endpoint in G is a Type I point.

Therefore, since G has a �nite number of endpoints, G has a �nite number of Type

II points. It is easy to see that if y ∈ G is Type I, then σm(y) is Type I for each

m ∈ N, and if x ∈ G is Type II then σm(x) is Type II for each m ∈ N. Therefore
σ maps the Type II points onto the Type II points, and thus σ permutes the Type

II points. So if x ∈ G is Type II, then there is an n ∈ N such that σn(x) = x.

Suppose x is a Type II point and y ∈ G such that for some i ∈ N, πi(x) = πi(y)

and suppose π1,i(x) 6= π1,i(y). Then G contains the point z = π1,i(y)⊕ σi(x). But

for each n, σn(z) 6= z. Therefore z is Type I even though there is an m such that

σm(z) = x. This is a contradiction so π1,i(x) = π1,i(y).

Finally, let x ∈ G be Type II, let n ∈ N, and let ε > 0. De�ne Fn : [0, 1]→ 2[0,1]
n

by Fn(s) = {(t1, . . . , tn) | tn = s and ti ∈ f(ti+1) for i ∈ {1, . . . , n− 1}}. According
to Lemma 5.1 of [6], Fn is upper semi-continuous. Since f(πi+1(x)) = {πi(x)} for
each i ∈ N, Fn(πn(x)) = {π1,n(x)}. Let U =

n

Π
i=1

(πi(x) − ε, πi(x) + ε). Then U is

an open set in [0, 1]n and Fn(πn(x)) ⊂ U . So there is a δ > 0 such that if y ∈ G
and |πn(y)− πn(x)| < δ then Fn(πn(y)) ⊂ U . Since π1,n(y) ∈ Fn(πn(y)) it follows

that
n

Σ
i=1

|πi(x)−πi(y)|
2i < ε

n

Σ
i=1

1
2i < ε. �

Part iii of Lemma 7 will play an important role in the results that follow. Part

iii implies that if {zn} is a sequence of points in this �nite graph G = lim
←
f , and
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there is a Type II point z ∈ G, and an m ∈ N such that σm(z) = z, and {σm(zn)}
converges to z, then {zn} also converges to z. This will be used to assure that the

closure of
∞
∪
i=1

mi∪
j=0

Ψi(j) contains a Type II point, where Ψi is constructed as in the

proof of Lemma 5.

Lemma 8. G has at most two Type II points.

Proof. Suppose e1, e2, and e3 are three distinct Type II points, and let n ∈ N
such that σn(ei) = ei for each i ∈ {1, 2, 3}. Let a = π1(e1), b = π1(e2) , and

c = π1(e3). If a = b then e1 = e2 since for each k ∈ N , πnk(e1) = πnk(e2) and

therefore π1,nk(e1) = π1,nk(e2) by Lemma 7. So a 6= b and similarly b 6= c and

c 6= a. Without loss of generality assume a < b < c. Suppose K is a continuum

in G that contains e1 and e3. Then for each k, K contains a point zk such that

πnk(zk) = b = πnk(e2) . Therefore by Lemma 7, π1,nk(zk) = π1,nk(e2). It follows

that the sequence {zk} converges to e2 and therefore e2 ∈ K. But e2 is Type II and

thus e2 is an endpoint of G by Lemma 5. So it is not possible that every continuum

that contains e1 and e3 contains e2. �

For the remainder of this section we will consider the cases where G has zero,

one, or two Type II points and show that in each case either G must be an arc, or

G must be either an arc or a simple triod. We begin with the case where G has no

Type II points for which the next lemma is useful.

Lemma 9. Every Type I point in G has a Type I neighborhood.

Proof. Every non endpoint of G has a Type I neighborhood, and if x ∈ G and there

is an m such that σm(x) has a Type I neighborhood, then by the continuity of σ,

x has a Type I neighborhood. So if G contains a Type I point x such that x does

not have a Type I neighborhood, then for each m ∈ N, σm(x) is an endpoint of

G. Since x is Type I there is an N ∈ N such that for each m ≥ N , σm(x) ∈ A, it
follows that for each m ≥ N , σm(x) ∈ {P0, P1}. It follows that there is no Type

I point that does not have a Type I neighborhood if each of the following is true:

(i) If σ(P0) = P0 and P0 is an endpoint of G then P0 has a Type I neighborhood.

(ii) If σ(P1) = P1 and P1 is an endpoint of G then P1 has a Type I neighborhood.

(iii) If σ(P0) = P1, σ(P1) = P0, P0 and P1 are both endpoints of G then P0 and P1

have Type I neighborhoods.

Assume σ(P0) = P0 and P0 is an endpoint of G. It follows that for each i ∈ N,
πi(P0) = 0, and there is an arc L in G such that P0 is contained in the interior

of L, and G has order two each point in L \ P0, and P1 ∈ G \ L. Then there is a

δ1 > 0 such that if x ∈ G and d(x, P1) < δ then x ∈ G \ L. Let F be an closed

connected subset of G with diameter less than δ1 such that P1 is contained in the
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interior of F . There is a δ2 > 0 such that if x ∈ G and d(x, P1) < δ2 then x ∈ F .
Let δ = min {δ1, δ2}.

Let N ∈ N such that 1
2N

< δ
2 . Let n ≥ N and let ε > 0. Let R1 be a point in

G such that πn(R1) = 1. And let g : [0, 1]→ G be a continuous function such that

g(0) = P0 and g(1) = R1, and g( 1
2 ) = P1.

Let f : [0, 1]→ A be a continuous function such that f(0) = P0 and f(1) = P1.

Then π1 ◦ f : [0, 1] → [0, 1] and πn ◦ g : [0, 1] → [0, 1] are continuous functions

with π1 ◦ f(0) = 0 = πn ◦ g(0) and π1 ◦ f(1) = 1 = πn ◦ g(1). There is an

ε1 > 0 such that if s, t ∈ [0, 1] and |s− t| < ε1 then d(f(s), f(t)) < min
{
ε
2 ,

δ
2

}
and

d(g(s), g(t)) < min
{
ε
2 ,

δ
2

}
. According to Lemma 1 there is an m ∈ N and functions

α, β : Sm → [0, 1] such that π1◦f ◦α = πN ◦g◦β, α(0) = 0 = β(0), α(1) = 1 = β(1),

and for each i ∈ {0, . . . ,m− 1}, |α(i+ 1)− α(i)| < ε1 and |β(i+ 1)− β(i)| < ε1.

De�ne Ψ : Sm → G by Ψ(i) = π1,n−1(g ◦ β(i))⊕ f ◦α(i) for each i ∈ {0, . . . ,m}.
Then for each i ∈ {0, . . . ,m}, Ψ(i) ∈ G and Ψ(0) = P0. Also for each i ∈
{0, . . . ,m− 1}, d(Ψ(i+1),Ψ(i)) < d(g ◦α(i+1), g ◦α(i))+d(f ◦β(i+1), f ◦β(i)) <
ε
2 + ε

2 < ε. There is an i0 ∈ Pm such that 1
2 is between β(i0) and β(i0 + 1).

Then d(Ψ(i0), P1) = d(Ψ(i0), g( 1
2 )) ≤ d(g ◦ β(i0), g( 1

2 )) + 1
2N

< δ
2 + δ

2 = δ. Thus

Ψ(i0) ∈ F . Finally note that σn−1(Ψ(i)) = f ◦ α(i) ∈ A for each i ∈ Sm.
Let {εi} be a sequence of positive numbers less than δ and converging to 0.

Construct Ψi : Smi → G as above for each εi, leaving n and δ �xed, and let W be

the closure of
∞
∪
i=1

mi∪
j=0

Ψi(j). By Lemma 4, W contains an arc W ′ with one endpoint

in E = {P0} and the other endpoint in F . Therefore L ⊂ W ′. Now since for each

i and each j in the domain of Ψi, σ
n−1(Ψi(j)) ∈ A, and since σn−1 is continuous

and A is closed, σn−1(W ) ⊂ A. Therefore σn−1(L) ⊂ A. The choice of n ≥ N was

arbitrary so σn(L) ⊂ A for each n ≥ N − 1. Therefore L is a Type I neighborhood

of P0.

The proof that if σ(P1) = P1 and P1 is an endpoint of G then P1 has a Type I

neighborhood is the same as the proof above. So assume σ(P0) = P1 and σ(P1) = P0

and both P0 and P1 are endpoints of G . In this case the proof above with each

instance of ”n” replaced with ”2n” shows that there is an N ∈ N and open sets O0

and O1 such that P0 ∈ O0 and P1 ∈ O1 and such that for each n ≥ N , σ2n(O0) ⊂ A
and σ2n(O1) ⊂ A. Assume x ∈ σ−1(O1)∩O0 and n ≥ 2N . Then if n is even, since

x ∈ O0, σ
n(x) ∈ A. If n is odd, there is an m ≥ N such that n− 1 = 2m, and since

σ(x) ∈ O1, σ
n(x) = σn−1(σ(x)) = σ2m(σ(x)) ∈ A. Therefore σ−1(O1) ∩ O0 is a

Type I neighborhood of P0 and similarly σ−1(O0) ∩ O1 is a Type I neighborhood

of P1. �

Theorem 10. If G has no Type II points then G is an arc.
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Proof. Since G is compact and every point of G is contained in a Type I neighbor-

hood, G can be covered by a �nite collection of Type I neighborhoods. Therefore

there is an N ∈ N such that if n > N , σN (G) = G ⊂ A. �

Theorem 11. If G has one Type II point, then G is an arc or a simple triod.

Proof. Let q be the only Type II point of G. Let T be a continuum in G that

contains A and is irreducible about the set {P0, P1, q}. Therefore T is either an arc

or a simple triod. Since σ(q) = q, q is not contained in A, and there is a b ∈ [0, 1]

such that πi(q) = b for each i ∈ N. Let f : [0, 1]→ T be a continuous function such

that f(0) = P0 and f( 1
2 ) = q, and f(1) = P1 . Let δ > 0 such that 2δ < d(q, A).

Let L be an arc with diameter less than δ
2 that contains q in its interior and such

that every point in L \ Q has order two. Let F be a connected closed subset of

G \ L such that if y ∈ G and d(y, P0) < δ
2 then y ∈ F . Therefore F ∩ L = ∅.

Since each point of G \ L has a Type I neighborhood and G \ L is compact, there

is an N2 ∈ N such that if n ≥ N2 then σn−1(G \ L) ⊂ A. Let R0 and R1 be points

in G such that πN (R0) = 0 and πN (R1) = 1. And let g : [0, 1]→ G be a continuous

function such that g(0) = R0, g(1) = R1, and g( 1
2 ) = P0.

Then π1 ◦ f : [0, 1] → [0, 1] and πN ◦ g : [0, 1] → [0, 1] are continuous functions

with π1 ◦ f(0) = 0 = πN ◦ g(0) and π1 ◦ f(1) = 1 = πN ◦ g(1). Let ε > 0 such

that ε < δ
4 . By Lemma 7 there is an ε1 > 0 such that if q ∈ Q and y ∈ G such

that |πN (q) − πN (y)| < ε1 then
N

Σ
i=1

|πi(q)−πi(y)|
2i < ε

2 . Also, there is an ε2 > 0

such that if s, t ∈ [0, 1] and |s − t| < ε2 then d(f(s), f(t)) < min
{
ε
2 , ε1

}
and

d(g(s), g(t)) < min
{
ε
2 , ε1

}
. According to Lemma 1 there is an m ∈ N and functions

α, β : Sm → [0, 1] such that π1◦f ◦α = πN ◦g◦β, α(0) = 0 = β(0), α(1) = 1 = β(1),

and for each i ∈ {0, . . . ,m− 1}, |α(i+ 1)− α(i)| < ε2 and |β(i+ 1)− β(i)| < ε2.

De�ne Ψ : Sm → G by Ψ(i) = π1,N−1(g ◦ β(i))⊕ f ◦α(i). Then for each i ∈ Sm,
Ψ(i) ∈ G and σN−1(Ψ(i)) = f ◦ α(i) ∈ T . Also for each i ∈ {0, . . . ,m− 1},
d(Ψ(i+ 1),Ψ(i)) < d(g ◦ β(i+ 1), g ◦ β(i)) + d(f ◦ α(i+ 1), f ◦ α(i)) < ε

2 + ε
2 = ε.

There is an iε ∈ Sm such that 1
2 is between α(iε) and α(iε + 1) . It follows

that |α(iε) − 1
2 | < ε2. Therefore d(f ◦ α(iε), f( 1

2 )) < ε1, and thus |π1 ◦ f ◦ α(iε) −

π1(q)| = |πN ◦ g ◦ β(iε) − πN (q)| < ε1. Thus d(Ψ(iε), q) <
N

Σ
i=1

|πi◦g◦β(iε)−πi(q)|
2i +

d(f ◦ α(iε), f( 1
2 )) < ε

2 + ε
2 = ε. Also there is a j0 such that 1

2 is between β(j0) and

β(j0+1). Then d(Ψ(j0), P ′) = d(Ψ(j0), g( 1
2 )) ≤ d(g◦β(j0), g( 1

2 ))+ 1
2N

< δ
4 + δ

4 = δ
2 .

Thus Ψ(j0) ∈ F ⊂ G \ L.
Let {εi} be a sequence of positive numbers less than δ

4 and converging to 0.

Construct Ψi : Smi → G and iεi as above for each εi, leaving N and δ �xed, and

let W be the closure of
∞
∪
i=1

mi∪
j=1

Ψi(j). Since for each i and each j in the domain of
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Ψi, σ
N−1(Ψi(j)) ∈ T , and since σn−1 is continuous and T is closed, σn−1(W ) ⊂ T .

By Lemma 4, W contains an arc W ′ with one endpoint q and the other endpoint in

F ⊂ G \ L. So L ⊂ W ′ . Therefore G = σN−1(G) = σN−1(L) ∪ σN−1(G \ L) ⊂ T .
So T = G. �

Theorem 12. If G has two Type II points and one of them is contained in A, then

G is an arc.

Proof. Let {q1, q2} be the set of Type II points in G. Assume q2 ∈ A. Since q2 is

an endpoint of G, q2 ∈ {P0, P1}. Assume q2 = P0. The proof for q2 = P1 is the

same. Let T be a continuum in G that contains A and is irreducible about the

set {q1, P0, P1}. Let f : [0, 1] → T be a continuous function such that f(0) = P0,

f(1) = P1, and f( 1
2 ) = q1 such that for each x ∈ [0, 12 ], f(x) is contained in the arc

in T from q1 to P0, and for each x ∈ [ 12 , 1], f(x) is contained in the arc in T from

q1 to P1 . Let L be an arc in T \ {Po} that contains q1 in its interior and such that

every point in L \ {q1} has order two in G.

If A contains points x and y such that πn(x) < πn(q1) < πn(y) for some n ∈ N ,

then A contains a point zn such that πn(zn) = πn(q1). By Lemma 7 π1,n(zn) =

π1,n(q1) for each i ≤ n. So since A is closed q1 is not in A, there is an N1 ∈ N such

that if n > N1then either πn(x) < πn(q1) for each x ∈ A or πn(x) > πn(q1) for

each x ∈ A. It follows that for n ≥ N1, σ
n(A) does not contain both P1 and P0.

But σ2(Po) = P0, so σ
m(A) must contain Po for each even m. It follows that for

n ≥ N1 and n even, P1 is not in σn(A).

Since each point of G \ L has a Type I neighborhood and G \ L is compact, there

is an N2 ∈ N such that if n ≥ N2 and x ∈ G \ L then σn−1(x) ∈ A ⊂ T . So there

is an N3 ∈ N such that if n ≥ N3 and n− 1 is even then σn−1(G \ L) ⊂ A \ {P1}.
Let N be an odd integer such that N ≥ N3. Also note that σ2(q1) = q1 and

σ2(q2) = q2. Therefore πN (q1) = π1(q1) and πN (q2) = π1(q2). Let R0 and R1 be

points in G such that πN (R0) = 0 and πN (R1) = 1. And let g : [0, 1] → G be a

continuous function such that g(0) = R0, g(1) = R1.

Then π1 ◦ f : [0, 1] → [0, 1] and πN ◦ g : [0, 1] → [0, 1] are continuous functions

with π1 ◦ f(0) = 0 = πN ◦ g(0) and π1 ◦ f(1) = 1 = πN ◦ g(1). Let ε > 0

such that ε < 0. By Lemma 7 there is an ε1 > 0 such that if i ∈ {1, 2} and

y ∈ G such that |πN (qi)− πN (y)| < ε1 then
N

Σ
i=1

|πi(qi)−πi(y)|
2i < ε

2 . Also, there is an

ε2 > 0 such that if s, t ∈ [0, 1] and |s− t| < ε2 then d(f(s), f(t)) < min
{
ε
2 , ε1

}
and

d(g(s), g(t)) < min
{
ε
2 , ε1

}
. According to Lemma 1 there is an m ∈ N and functions

α, β : Sm → [0, 1] such that π1◦f ◦α = πN ◦g◦β, α(0) = 0 = β(0), α(1) = 1 = β(1),

and for each i ∈ {0, . . . ,m− 1}, |α(i+ 1)− α(i)| < ε2 and |β(i+ 1)− β(i)| < ε2.
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De�ne Ψ : Sm → G by Ψ(i) = π1,N−1(g ◦ β(i)) ⊕ f ◦ α(i). Then for each

i ∈ Sm, Ψ(i) ∈ G and σN−1(Ψ(i)) = f ◦ α(i) ∈ T . For each i ∈ {0, . . . ,m− 1},
d(Ψ(i+ 1),Ψ(i)) < d(g ◦ β(i+ 1), g ◦ β(i)) + d(f ◦ α(i+ 1), f ◦ α(i)) < ε

2 + ε
2 = ε.

Let iε = max
{
i ∈ Sm |α(i) ≤ 1

2

}
. It follows that |α(iε) − 1

2 | < ε2. Therefore

d(f◦α(iε), f( 1
2 )) < ε1, and thus |π1◦f◦α(iε)−π1(q1)| = |πN ◦g◦β(iε)−πN (q1)| < ε1.

Thus d(Ψ(iε), q) <
N

Σ
i=1

|πi◦g◦β(iε)−πi(q1)|
2i + d(f ◦ α(iε), f( 1

2 )) < ε
2 + ε

2 = ε. Also

since πN (P0) = πN (q2) = π1(q2) = π1 ◦ f ◦ α(0)) = πN ◦ g ◦ β(0), π1,N−1(g ◦
β(0)) = π1,N−1(q2) by Lemma 7 part ii. So Ψ(0) = π1,N−1(g ◦ β(0)) ⊕ f ◦ α(0) =

π1,N−1(q2) ⊕ f(0) = π1,N−1(q2) ⊕ q2 = q2 = Po. Note that for i ∈ {0, . . . , iε},
σN−1(Ψ(i)) = f ◦ α(i) ∈ f [0, 12 ] which is the irreducible arc in T from P0 to q1.

Let {εk} be a sequence of positive numbers converging to 0. Construct Ψk :

Smi → G as above for each εk, leaving N and δ �xed, and let W be the closure

of
∞
∪
i=1

iεk∪
j=0

Ψi(j). By Lemma 4, W contains an arc W ′ with one endpoint q1 and

the other endpoint P0. Note that σN−1(W ) ⊂ f([0, 12 ]). Also L ⊂ W ′. Therefore

G = σN−1(G) = σN−1(L) ∪ σN−1(G \ L) ⊂ T . Since T ⊂ G, we have that

G = T . But P1 is not in σN−1(G \ L), so P1 ∈ σN−1(L) ⊂ f([0, 12 ]). Therefore T

is irreducible about {q1, P0}. That is G = T is an arc. �

The �nal case is not surprisingly the most complicated.

Theorem 13. If G has two Type II points and neither is contained in A, then G

is an arc or a simple triod.

Proof. Let {q1, q2} be the set of Type II points in G. Let T be a continuum in G

that contains A and is irreducible about the set {q1, q2, P0, P1}. Let f : [0, 1]→ T

be a continuous function such that f(0) = P0, f(1) = P1, f( 1
3 ) = q1, f( 2

3 ) = q2,

such that for each x ∈ [0, 13 ], f(x) is contained in the arc in T from P1 to q1, for each

x ∈ [ 13 ,
2
3 ], f(x) is contained in the arc in T from q1 to q2, and for each x ∈ [ 23 , 1],

f(x) is contained in the arc in T from q2 to P1. Let δ = d({q1, q2} , P0). Let L be

a set that is the union of two disjoint arcs such that each arc contains an element

of {q1, q2} in its interior, such that every point in L \ {q1, q2} has order two. Let F
be a connected closed subset of G \ L such that P0 is contained in the interior of

F . Let δ > 0 be such that if x ∈ G and d(x, {q1, q2}) < δ then x ∈ L and if x ∈ G
and d(x, P0) < δ then x ∈ F .

Next it will shown that there is an M ∈ N such that if n > M then σn(A) ⊂
A \ {P0, P1}. Note that either σ(q1) = q1 and σ(q2) = q1 or σ(q1) = q2. In the �rst

case let a, b ∈ [0, 1] such that πn(q1) = a and πn(q2) = b for each n ∈ N. In the latter
case let a, b ∈ [0, 1] such that π2n−1(q1) = π2n(q2) = a and π2n(q1) = π2n−1(q2) = b

for each n ∈ N. Without loss of generality assume a < b. For each n ∈ N let

vn, wn ∈ G such that πn(vn) = 0 and πn(wn) = 1. If A contains an element u
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such that πn(u) < a then the arc in G from u to wn contains a point yn such that

πn(yn) = a and a point zn such that πn(zn) = b. So either π1,n(yn) = π1,n(q1) and

π1,n(zn) = π1,n(q2) or π1,n(yn) = π1,n(q2) and π1,n(zn) = π1,n(q1). Since q1 and

q2 are endpoints of G, for su�ciently large n, d(wn, q1) < 1
2n and d(wn, q2) < 1

2n .

Thus there is an M1 ∈ N such that if n > M1 and u ∈ A then πn(u) > a. Similarly

if A contains an element u such that πn(u) > b then the arc in G from u to vn

contains a point yn such that πn(yn) = a and a point zn such that πn(zn) = b.

Therefore, as above, there is an M2 ∈ N such that if n > M2 and u ∈ A then

πn(u) < b. It follows that if n > max {M1,M2} then a < πn(x) < b for each x ∈ A,
and therefore σn(A) ⊂ A \ {P0, P1}.

Since each point of G \ L has a Type I neighborhood, and G \ L is compact,

there is an N1 ∈ N such that if n ≥ N1 and x ∈ G \ L then σn−1(x) ∈ A. So there

is an N2 ∈ N such that if n ≥ N2 then σn−1(G \ L) ⊂ A \ {P0, P1}. Let N be an

odd integer such that N ≥ N2 and 1
2N

< δ
2 . Since σ2(q1) = q1 and σ2(q2) = q2,

πN (q1) = π1(q1), and πN (q2) = π1(q2). Let R0 and R1 be points in G such that

πN (R0) = 0 and πN (R1) = 1. And let g : [0, 1]→ G be a continuous function such

that g(0) = R0, g(1) = R1, and g( 1
2 ) = Po.

Then π1 ◦ f : [0, 1] → [0, 1] and πN ◦ g : [0, 1] → [0, 1] are continuous functions

with π1 ◦ f(0) = 0 = πN ◦ g(0) and π1 ◦ f(1) = 1 = πN ◦ g(1). Let ε > 0 such

that ε < δ
2 . By Lemma 7 there is an ε1 > 0 such that if y ∈ G and q ∈ {q1, q2}

such that |πN (q) − πN (y)| < ε1 then
N

Σ
i=1

|πi(q)−πi(y)|
2i < ε

2 . Also, there is an ε2 > 0

such that if s, t ∈ [0, 1] and |s − t| < ε2 then d(f(s), f(t)) < min
{
ε
2 , ε1

}
and

d(g(s), g(t)) < min
{
ε
2 , ε1

}
. According to Lemma 1 there is an m ∈ N and functions

α, β : Sm → [0, 1] such that π1◦f ◦α = πN ◦g◦β, α(0) = 0 = β(0), α(1) = 1 = β(1),

and for each i ∈ {0, . . . ,m− 1}, |α(i+ 1)− α(i)| < ε2 and |β(i+ 1)− β(i)| < ε2.

De�ne Ψ : Sm → G by Ψ(i) = π1,N−1 ◦ g ◦ β(i) ⊕ f ◦ α(i). Then for each

i ∈ Sm, Ψ(i) ∈ G and σN−1(Ψ(i)) = f ◦α(i) ∈ T . And for each i ∈ {0, . . . ,m− 1},
d(Ψ(i+ 1),Ψ(i)) < d(g ◦ β(i+ 1), g ◦ β(i)) + d(f ◦ α(i+ 1), f ◦ α(i)) < ε

2 + ε
2 = ε.

There is a j0 such that 1
2 is between β(j0) and β(j0 + 1). Then d(Ψ(j0), P0) =

d(Ψ(j0), g( 1
2 )) ≤ d(g ◦ β(j0), g( 1

2 )) + 1
2N

< δ
2 + δ

2 = δ. Thus Ψ(j0) ∈ F ⊂ G \ L.
Consider the following three cases: case I: α(j0) ≤ 1

3 , case II: 1
3 ≤ α(j0) ≤ 2

3 , and

case II: 2
3 ≤ α(j0).

For case I let j1(ε) = j0, let j2(ε) = max
{
i ≥ j0 |α(k) ≤ 1

3 for each k such that j0 ≤ k ≤ i
}
,

and let j3(ε) = max
{
i ≥ j2(ε) |α(k) ≤ 2

3 for each k such that j0 ≤ k ≤ i
}
. It fol-

lows that |α(j2(ε))− 1
3 | < ε2 and |α(j3(ε))− 2

3 | < ε2. Therefore d(f◦α(j2(ε)), f( 1
3 )) <

ε1 and d(f ◦ α(j3(ε)), f( 2
3 )) < ε1. Thus d(Ψ(j2(ε)), q1) <

N

Σ
i=1

|πi◦g◦β(j2(ε))−πi(q1)|
2i +

d(f ◦ α(j2(ε)), f( 1
3 )) < ε

2 + ε
2 = ε and d(Ψ(j3(ε)), q2) <

N

Σ
i=1

|πi◦g◦β(j3(ε))−πi(q2)|
2i +
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d(f ◦ α(j3(ε)), f(2)) < ε
2 + ε

2 = ε. Note that for each i between j1(ε) and j3(ε),

α(i) ≤ 2
3 , so σ

N−1(Ψ(i)) = f ◦ α(i) ∈ f([0, 23 ]).

For case II let j1(ε) = min
{
i ≤ j0 |α(k) ≥ 1

3 for each k such that i ≤ k ≤ j0
}
,

let j2(ε) = j0, and let j3(ε) = max
{
i ≥ j0 |α(k) ≤ 2

3 for each k such that jo ≤ k ≤ i
}
.

As in case I we have d(Ψ(j1(ε)), q1) < ε and d(Ψ(j3(ε)), q2) < ε, and for each i be-

tween j1(ε) and j3(ε), 1
3 ≤ α(i) ≤ 2

3 , so σ
N−1(Ψ(i)) = f ◦ α(i) ∈ f([ 13 ,

2
3 ]).

For case III let j1(ε) = min
{
i ≤ j0 |α(k) ≥ 1

3 for each k such that i ≤ k ≤ j0
}
,

let j2(ε) = min
{
i ≥ j1(ε) |α(k) ≥ 2

3 for each k such that j1 ≤ k ≤ i
}
, and let j3(ε) =

j0. As in case I and case II, d(Ψ(j1(ε)), q1) < ε and d(Ψ(j2(ε)), q2) < ε, and for

each i between j1(ε) and j3(ε), 1
3 ≤ α(i) ≤ 2

3 , so σ
N−1(Ψ(i)) = f ◦ α(i) ∈ f([ 13 , 0]).

Let {εi} be a sequence of positive numbers less than δ
4 and converging to 0.

Construct Ψi : Smi → G as above for each εi, leaving N and δ �xed. Since case I,

case II, or case III must hold for each εi, without loss of generality assume the same

case holds for all εi, and let W be the closure of
∞
∪
i=1

j3(εi)
∪

j=j1(εi)
Ψi(j). By Lemma 4, W

contains an arc W1 with one endpoint q1 and the other endpoint in F , and an arc

W2 with one endpoint q2 and the other endpoint in F . Either σN−1(W1 ∪W2) ⊂
f([0, 23 ]) or σN−1(W1∪W2) ⊂ f([ 13 , 1]) depending on which of case I, case II, or case

III holds for all εi. Since L ⊂W1 ∪W2, G = σN−1(G) = σN−1(L)∪σN−1(G \L) ⊂
T . Since T ⊂ G, we have that G = T . But σN−1(G \ L) ⊂ T \ {P0, P1}, and
either σN−1(L) ⊂ f([0, 23 ]) or σN−1(L) ⊂ f([ 13 , 1]) . So either P0 ∈ f([ 13 , 1]) or

P1 ∈ f([0, 23 ]). So either T is irreducible about {P0, q1, q2} or T is irreducible about

{P1, q1, q2}. Thus G = T is either an arc or a simple triod. �

Theorem 14. If f : [0, 1] → 2[0,1] is a surjective upper semi-continuous function

such that lim
←
f is a �nite graph, then lim

←
f is an an arc or a simple triod.

4. Conclusion

There remains this speci�c question.

Question. Is there a surjective upper semi-continuous function f : [0, 1]→ 2[0,1]

such that lim
←
f is a simple triod?

There is also the more general question of what topological properties do continua

that are the inverse limit with a single closed subset of [0, 1] × [0, 1] share. This

collection includes all chainable continua that are the inverse limit with a single

continuous bonding map and as far as we know an ad hoc collection of dendroids,

dendrites, and some continua that contain cycles, but no �nite graphs except an

arc and maybe a triod. Inverse limits with set valued functions can be useful for

producing a complicated continuum from a simple subset of [0, 1] × [0, 1] and for

studying the dynamics of set valued functions, but the more general information
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we have about what topological properties are shared by these inverse limits the

more powerful the tool they become.
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