
INVERSE LIMITS WITH SET VALUED FUNCTIONS

VAN NALL

Abstract. We begin to answer the question of which continua in the Hilbert

cube can be the inverse limit with a single upper semi-continuous bonding map

from [0, 1] to 2[0,1]. Several continua including [0, 1] × [0, 1] and all compact

manifolds with dimension greater than one cannot be equal to such an inverse

limit. It is also shown that if the upper semi-continuous bonding maps have

only zero dimensional point values, then the dimension of the inverse limit

does not exceed the dimension of the factor spaces.

1. Introduction

The principle advantage of the inverse limit approach in the study of continua

is that a very complicated continuum can be described in terms of a single simple

function. Recent work by Mahavier and Ingram [2] has raised interest in inverse

limits with upper semi-continuous set valued functions. An important question

with all inverse limits is what structures of the inverse limit are determined by the

factor spaces and the bonding maps. This paper considers this question with the

focus on dimension and primarily on inverse limits using a single set valued bonding

map on one dimensional factor spaces. For example, it is known that the inverse

limit with a single set valued function from an arc to an arc can have any �nite

dimension or even be in�nite dimensional [2, Example 5, p. 129]. So we ask what

sort of set valued functions yield inverse limits with dimension higher than their

factor spaces.

This work was motivated by a more speci�c question asked by Tom Ingram. Is

there an upper semi-continuous set valued function f from [0, 1] into 2[0,1] such that

the inverse limit with the single function f is homeomorphic to a 2-cell? It will

be shown that if X is any continuum such that every nonempty subcontinuum of

X contains an open set, then the inverse limit with a single upper semi-continuous

set valued function from a continuum X into 2X is not homeomorphic to an n

dimensional manifold with n bigger than one. In addition it will be shown that if

the upper semi-continuous set valued functions do not have a value at a point with
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dimension one or more, then the dimension of the inverse limit cannot be higher

than the dimension of the factor spaces.

2. Definitions and Notation

In this paper all spaces are separable and metric. A continuum is a com-

pact and connected separable metric space. If {Xi} is a countable collection of

compact spaces each with metric di such that diam(Xi) ≤ 1 for each i, then

Π∞i=1Xi represents the countable product of the collection {Xi}, with metric given

by d(x,y) =
∑∞
i=1

di(xi,yi)
2i . Note that in this article a sequence will be de-

noted with bold type and the terms of the sequence in italic type so that, for

example, x = (x1, x2, x3, . . .). For each i let πi : Π∞i=1Xi → Xi be de�ned by

πi(x) = πi((x1, x2, x3, . . .)) = xi. For each i, let fi : Xi+1 → 2Xi be a set valued

function where 2Xi is the space of closed subsets of Xi with the Hausdor� met-

ric. The inverse limit of the sequence of pairs {(fi, Xi)}, denoted lim←−(fi, Xi), is
de�ned to be the set of all (x1, x2, x3, . . .) ∈ Π∞i=1Xi such that xi ∈ fi(xi+1) for

each i. The functions fi are called bonding maps, and the spaces Xi are called

factor spaces. A set valued function f : X → 2Y into the closed subsets of Y is

upper semi-continuous (usc) if for each open set V ∈ Y the set {x : f(x) ⊂ V } is
an open set in X. For the countable product of a single space X de�ne the shift

map σ : Π∞i=1X → Π∞i=1X by σ((x1, x2, x3, . . .)) = (x2, x3, x4, . . .). We say a subset

M ⊆ Π∞i=1X is shift invariant if σ(M) = M . In this paper dim(X) refers to the

covering dimension. That is, for a compact set X, dim(x) ≤ n if and only if for

each ε > 0 there is an open cover of X with mesh less than ε and order less than or

equal to n, where the order of a cover is the largest integer n such that there are

n+ 1 members of the cover which have non-empty intersection [1, p. 67].

If x = (x1, x2, x3, . . .) ∈ Π∞i=1Xi and y = (y1, y2, y3, . . .) ∈ Π∞i=1Xi and xi = yi

for some i, then de�ne Cri(x,y) = (x1, x2, . . . , xi, yi+1, yi+2, . . .). Note then that

Cri(x,x) = x for each x ∈ M and each i. For a subset M of Π∞i=1X, let Cr(M)
be the set of all z ∈ Π∞i=1Xi such that there is an i and elements x and y in M

such that z = Cri(x,y). Note that M ⊆ Cr(M). We say a subset M ⊆ Π∞i=1Xi

contains all crossovers if Cr(M) = M . It is easy to verify that if there are functions

fi : Xi+1 → 2Xi , and M = lim←−(fi, Xi), then Cr(M) = M .

Finally, a subcontinuum A of a continuum X is a free arc if A is an arc such

that the boundary of A is contained in the set of endpoints of A, and a continuum

X is a �nite graph if X is the union of a �nite number of free arcs.

3. Upper Semi-continuity, Compact Inverse Limits, and Crossovers

In [2, Theorem 2.1, p. 120] it is shown that if f : X → 2Y is a set valued function

and X and Y are compact, then f is usc if and only if the graph of f is closed. It
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follows that if g : X → Y is a continuous function between compact sets X and Y ,

and Y = g(X), then g−1 : Y → 2X is an usc set valued function. It is an elementary

exercise to show that if X, Y , and Z are compact, then the composition of two usc

functions g : X → 2Z and f : Z → 2Y is a usc function provided what is meant by

the composition f ◦ g is the set of all pairs (x, y) such that there is a z ∈ g(x) such
that y ∈ f(z).

Theorem 3.1. If M = lim←−(fi, Xi) where Xi is compact, fi : Xi+1 → 2Xi , and

πi(M) = Xi for each i, then M is compact if and only if each fi is usc.

Proof. Assume M = lim←−(fi, Xi), where Xi is compact, and fi : Xi+1 → 2Xi . If

each fi is usc then M is compact by [2, Theorem 3.2 p.121] . So suppose M is

compact. Let pi = πi|M . Then fi = pi ◦ p−1
i+1 for each i. Since each fi is the

composition of usc functions, each fi is usc. �

Theorem 3.2. Suppose each Xi is a compact space, and M is a compact subset of

Π∞i=1Xi, and X
′
i = πi(M) for each i, then the following are equivalent:

i. There exist set valued functions gi : X ′i+1 → 2X
′
i such thatM = lim←−(gi, X ′i).

ii. There exist usc set valued functions fi : X ′i+1 → 2X
′
i such that M =

lim←−(fi, X ′i).
iii. M contains all crossovers.

Proof. Assume each Xi is a compact space and M is a compact subset of Π∞i=1Xi,

andX ′i = πi(M) for each i. That property ii follows from property i is established in

the previous theorem. It is easy to see that an inverse limit contains all crossovers,

so property ii imples property iii. So all that remains is to show that if M contains

all crossovers, then there exist usc set valued functions fi : X ′i+1 → 2X
′
i such that

M = lim←−(fi, X ′i).
AssumeM contains all crossovers. Let pi = πi|M . De�ne the set valued function

fi : X ′i+1 → 2X
′
i by fi = pi ◦p−1

i+1. Since each fi is the composition of usc set valued

functions, each fi is usc. If (x1, x2, x3, . . .) ∈M , then xi ∈ pi◦p−1
i+1(xi+1) = fi(xi+1)

for each i. So M ⊆ lim←−(fi, X ′i). Now assume (x1, x2, x3, . . .) ∈ lim←−(fi, X ′i). For

each i, since xi ∈ fi(xi+1) = pi ◦ p−1
i+1(xi+1), there is a z ∈M such that pi(z) = xi,

and pi+1(z) = xi+1. Since M contains all crossovers it follows that for each n there

is a zn ∈M such that pi(zn) = xi for each i ≤ n. The sequence {zn} converges to
(x1, x2, x3, . . .), and, since M is closed, (x1, x2, x3, . . .) ∈M . �

4. Inverse Limits with a Single Set Valued Function

If G ⊂ X ×X with π1(G) = π2(G) = X, then G is closed if and only if G is the

graph of a usc function f : X → 2X [2, Theorem 2.1 p. 120]. We will use lim←−G to

refer to the inverse limit of the single function from X to 2X whose graph is G and
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in so doing will always imply that π1(G) = π2(G) = X. Let I = [0, 1]. An example

is given in [2, Example 5, p. 129] of a closed subset G of I × I so that lim←−G is

homeomorphic to I × I ∪ ([−1, 0]× {0}). So it is natural to ask if there is a closed

subset G ⊂ I×I such that lim←−G is homeomorphic to I×I. In light of Theorem 3.2

this is equivalent to asking if the Hilbert cube contains a subset K homeomorphic

to I × I such that σ(K) = K and Cr(K) = K. In this section we show that there

are many di�erent continua, all having dimension at least two, including I×I, that
are not homeomorphic to a subset K of the Hilbert cube such that σ(K) = K and

Cr(K) = K. The question remains whether there is a one dimensional continuum

that is homeomorphic to a subset K of the Hilbert cube such that σ(K) = K and

Cr(K) = K.

The proof of the following theorem depends at a crucial point on the following

observations about the shift map. First, if M = lim←−G for some closed G ⊂ X ×X,

then σ(M) = M . Second, if K is a compact subset of M such that σ|K is one-

to-one, then K and σ(K) are homeomorphic subsets of M . In particular, if K is

a compact subset of M such that π1(K) is a singleton set, then K and σ(K) are

homeomorphic subsets of M . Finally, we say a collection {Kα}α∈Λ of continua has

the �nite chain property if for each pair of points {x, y} ⊂ ∪
α∈Λ

Kα there is a �nite

subcollection {Kα1 ,Kα2 , . . . ,Kαn
} of {Kα}α∈Λ such that x ∈ Kα1 , y ∈ Kαn

, and

Kαi
∩Kαi+1 6= ∅ for i = 1, 2, . . . , n− 1.

Theorem 4.1. Suppose X is a continuum such that every non-degenerate subcon-

tinuum of X contains a nonempty set that is open relative to X. Suppose n > 1,
and M is an n dimensional continuum that is the union of a countable collection

{Ki} of continua with the �nite chain property such that for each i, every open sub-

set of Ki has dimension n, every compact n dimensional subset of Ki has nonempty

interior, and there is no uncountable pairwise disjoint collection of nonempty zero

dimensional subsets of Ki each of which separates Ki. Then there is no closed set

G ⊂ X ×X with π1(G) = π2(G) = X such that M = lim←−G .

Proof. Assume the hypotheses are true for X and M , and assume that M = lim←−G
where G ⊂ X × X such that π1(G) = π2(G) = X. For each i, let pi be the

restriction to M of the ith projection of Π∞i=1X onto X.

If a closed subset C of M separates M , and C does not separate Ki for each i,

then there are integers i and j such that Ki ∩Kj 6= ∅, and Ki ∩Kj ⊆ C. To see

this, suppose A and B are nonempty disjoint open sets such that M \ C = A ∪B.
Let x ∈ A , and y ∈ B, and Let {Kn1 ,Kn2 , . . .Knm

} be a �nite collection from

{Ki} such that x ∈ Kn1 , y ∈ Knm
, and Kni

∩Kni+1 6= ∅ for i = 1, 2, . . .m− 1. Let
s be the smallest integer such that Kns

∩B 6= ∅. Since C doest not separate either
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Kns
or Kns−1 it follows that Kns

⊂ B ∪ C and Kns−1 ⊂ A ∪ C, and therefore

Kns−1 ∩Kns
⊂ C.

So if there is an uncountable pairwise disjoint collection C of closed subsets of

M that separate M , there is an i such that for uncountably many C ∈ C, C ∩Ki

separates Ki. It follows that there is no uncountable pairwise disjoint collection of

nonempty zero dimensional closed subsets of M each of which separates M .

Since X does not contain a continuum of convergence, X is hereditarily locally

connected [3, p. 167]. Therefore X is arc connected [3, p. 130], and therefore X

contains a nondegenerate arc, and that arc contains a free arcD. The free arcD con-

tains an uncountable pairwise disjoint collection of pairs of points {aα, bα}α∈Λ each

of which separates X. Therefore p−1
1 ({aα, bα}) is a closed set that separates M for

each α ∈ Λ. Therefore, according to the previous paragraph, dim(p−1
1 ({aα, bα})) >

0 for uncountably many α ∈ Λ. Since p−1
1 ({aα, bα}) = p−1

1 (aα)∪p−1
1 (bα) for each α,

it follows that there exists an uncountable subset A of X such that dim(p−1
1 (x)) > 0

for each x ∈ A.
Now p−1

1 (x) is compact, so p−1
1 (x) contains a nondegenerate continuum L for each

x ∈ A [1, p. 22]. This continuum L must have at least one projection that contains

a nondegenerate continuum, though p1(L) = {x}. So there is an earliest projection

pm(L) that contains a nondegenerate subcontinuum J of X, and each pi(L) for

i < m is a singleton set {xi}. Let L∗ = [
m−1
∩

i=1
p−1
i (xi)] ∩ p−1

m (J). Then L∗ ⊆ p−1
1 (x),

and pm(L∗) = J . If (z1, z2, z3, . . .) ∈ p−1
1 (J) , then, since M contains all crossovers,

(x1, x2, . . . , xm−1, z1, z2, . . .) ∈ L∗. Therefore (z1, z2, z3, . . .) ∈ p−1
1 (J) ∈ σm−1(L∗).

So p−1
1 (J) ⊆ σm−1(L∗). But σm−1(L∗) is homeomorphic to L∗. It follows that

p−1
1 (x) contains a set homeomorphic to p−1

1 (J). Since J has nonempty interior in

X, the set p−1
1 (J) has nonempty interior in M . According to the Baire Category

Theorem there is at least one i such that p−1
1 (J) ∩Ki has nonempty interior, and

therefore p−1
1 (J) ∩ Ki has dimension n. So p−1

1 (x) has dimension n. Since an n

dimensional space cannot be the countable union of closed subsets with dimension

less than n [1, p. 30], there is at least one j such that p−1
1 (x) ∩Kj has dimension

n, and therefore p−1
1 (x) ∩Kj has nonempty interior in Kj . Since A is uncountable

there is a j such that Kj contains an uncountable pairwise disjoint collection of sets

with nonempty interior in Kj . But Kj is contained in Π∞i=1X which has a countable

basis. This is a contradiction. Therefore there is no closed set G ⊂ X × X with

π1(G) = π2(G) = X such that M = lim←−G . �

If K is either a closed n-cell or an n dimensional manifold, then K can not be

separated by a set with dimension less than n − 1[1, p. 46], and a necessary and

su�cient condition for a subset of K to have dimension n is for that subset to

contain a nonempty set that is open in K [1, p. 48]. So if there is an n > 1such
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that M is a continuum that is the union of a countable collection of closed n-cells

and compact n dimensional manifolds with the �nite chain property, and X is a

�nite graph, then the hypothesis of Theorem 4.1 are satis�ed by X and M .

Corollary 4.2. If n > 1, and M is a continuum that is the union of a countable

collection with the �nite chain property of closed n-cells and compact n dimensional

manifolds, and X is a �nite graph, then there does not exist a closed set G ⊂ X×X
such that M = lim←−G .

The following example demonstrates that containing all crossovers is essential in

the proof of Theorem 4.1.

Example 4.3. If h : [ 1
2 , 1]×[0, 1]→ Iω is de�ned by h(x, y) = (xy, x(1−y), xy, x(1−

y), . . .) then it is easy to check that h is a homeomorphism andM = h([ 1
2 , 1]× [0, 1])

is shift invariant. If x = h(1, 2
3 ) = ( 2

3 ,
1
3 ,

2
3 ,

1
3 , . . .) and y = h( 1

2 ,
1
3 ) = (1

6 ,
1
3 ,

1
6 ,

1
3 , . . .),

then Cr2(x, y) = ( 2
3 ,

1
3 ,

1
6 ,

1
3 ,

1
6 , . . .) which is not in M . So M is a shift invariant

subset of the Hilbert cube which is homeomorphic to [0, 1]×[0, 1], and, as is required
by Theorem 4.1, Cr(M) 6= M .

5. Inverse Limits with Higher Dimension than the Factor Spaces

As noted above the inverse limit with the nterval [0, 1] as the factor space and usc
set valued functions can have dimension two, and in fact it can have any �nite di-

mension or be in�nite dimensional. However, it follows from the theorem below that

if the dimension of fi(x) is zero for each i and for each x ∈ [0, 1], then lim←−(fi, [0, 1])
has dimension no greater than one. So, for example, if G ⊂ [0, 1] × [0, 1] is the

union of the graphs of �nitely many continuous functions from [0, 1] to [0, 1] then
lim←−G is one dimensional.

Let {Xi}be a collection of compact spaces with dim(Xi) ≤ m for each i. Suppose

M = lim←−(fi, Xi) where each fi : Xi+1 → 2Xi is a usc set valued function. For each

n > 1 let Pj = X1 ×X2 × . . .×Xj , and de�ne Fn : Xn+1 → 2Pn by

Fn(x) = {(x1, x2, . . . , xn) ∈ Pn|xn ∈ fn(x), andxi ∈ fi(xi+1) for 1 ≤ i ≤ n− 1}

Lemma 5.1. F_n is usc for each n.

Proof. According to [2, Theorem 2.1, p.120] if the graph of Fn is closed then Fn

is usc. Let G = {(x1, x2, . . . , xn, xn+1) ∈ Pn+1|xi ∈ fi(xi+1)}. Then G is home-

omorphic to the graph of Fn. Suppose (z1, z2, . . . , zn, zn+1) ∈ Pn+1 \ G. Then

zi ∈ Xi \ fi(xi+1) for some i < n + 1. Thus (zi, zi+1) is not in Gi the graph of

fi, which is a closed subset of Xi × Xi+1 since fi is usc [2, Theorem 2.1, p.120].

So there exist open sets V and U such that (zi, zi+1) ∈ V × U ⊆ Xi ×Xi+1 \ Gi.
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Then (z1, z2, . . . , zn, zn+1) ∈ π−1
i (V ) ∩ π−1

i+1(U), π−1
i (V ) ∩ π−1

i+1(U) is open is Pn,

and π−1
i (V ) ∩ π−1

i+1(U) ⊆ Pn+1 \G. So G is closed, and therefore Fn is usc. �

Lemma 5.2. If dim(Fn(x)) > 0 for some n > 1 and x ∈ Xn+1, then there is an

i ≤ n+ 1 and z ∈ Xi+1 such that dim(fi(z)) > 0.

Proof. Suppose dim(Fn(x)) > 0 for some n > 1and x ∈ Xn+1. Since Fn(x) is

compact it must contain a non-degenerate continuum K [1, p. 22]. Let j be

the largest integer less than n + 1 such that dim(πj(K)) > 0. If j = n, then

πj(K) ⊆ fn(x). So dim(fn(x)) > 0. If j < n, then πj+1(K) is zero dimensional

and connected. So πj+1(K) = {z} for some z ∈ Xj+1, and πj(K) ⊆ fj(z). So

dim(fj(z)) > 0. �

Theorem 5.3. IfM = lim←−(fi, Xi) where each Xi is a compact space with dim(Xi) ≤
m, and each fi is a usc set valued function such that dim(fi(x)) = 0 for each i ,

and each x ∈ Xi+1, then dim(M) ≤ m.

Proof. Assume diam(Xi) ≤ 1 for each i. Let ε > 0, and let n be such that
∞

Σ
i=n+1

1
2i <

ε
2 , and let δ > 0 be such that

n

Σ
i=1

δ
2i <

ε
2 . By Lemma 5.2 dim(Fn−1(x)) = 0 for

each x ∈ Xn. For each x ∈ Xn, let Vx be a �nite pairwise disjoint open cover of

Fn−1(x) such that diam(πi(v)) < δ for each v ∈ Vx and each i < n. Since Fn−1 is

usc, each x ∈ Xn is contained in an open set Ux such that Fn−1(Ux) ⊆
⋃
Vx. Since

dim(Xn) ≤ m, and Xn is compact, there is a �nite open re�nement U of {Ux}x∈Xn

with mesh δ and order less than m+ 1 covering Xn.

For each v ∈ Vx let v∗ = {(x1, x2, x3, . . .) ∈M |(x1, x2, . . . , xn−1) ∈ v}, and let

V∗x={v∗|v ∈ Vx}. Then V∗x is a pairwise disjoint collection of open sets in M such

that diam(πi(v∗)) < δ for each v∗ ∈ V∗x and each i < n.

For each element u ∈ U there is an x ∈ Xn such that u ⊆ Ux , and therefore

Fn−1(u) ⊆
⋃
Vx. It follows that π−1

n (u) ⊆
⋃
V∗x . So the collection

{
v∗ ∩ π−1

n (u)|v∗ ∈ V∗x
}

is a partition of π−1
n (u) into pairwise disjoint open sets with diameter less than ε.

Since the order of the cover
{
π−1
n (u)|u ∈ U

}
of M is the same as the order of U ,

there is an open cover of M with order less than m+ 1 and mesh ε. �

Theorem 5.4. If X1 is a continuum such that every nondegenerate subcontinum

K of X1 contains a countable set that separates K, and for each i, Xi is compact,

and fi : Xi+1 → 2Xi is usc, and for each y ∈ Xi, dim({x ∈ Xi+1|y ∈ fi(x)}) = 0 ,

then dim(lim←−(fi, Xi)) ≤ 1.

Proof. Suppose X1 is a continuum such that every nondegenerate subcontinum K

of X1 contains a countable set that separates K, and for each i, Xi is compact, and

fi : Xi+1 → 2Xi is usc, and for each y ∈ Xi, dim({x ∈ Xi+1|y ∈ fi(x)}) = 0. Let

M = lim←−(fi, Xi).
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If z ∈ X1 and dim(π−1
1 (z)) > 0, then π−1

1 (z) contains a nondegenerate continuum
L. Let m be the smallest integer such that dim(πm(L)) > 0. Let {y} = πm−1(L),
and then πm(L) ⊂ {x ∈ Xm|y ∈ fm−1(x)}. This contradicts the assumption that

{x ∈ Xm|y ∈ fm−1(x)} is zero dimensional. So dim(π−1
1 (z)) = 0 for each z ∈ X1.

If dim(M) > 1, then, since M is compact, M contains a continuum K such that

every subset of K that separates K has dimension at least one [1, Theorem VI

8, p. 94]. Now dim(π−1
1 (x)) = 0 for each x ∈ X1. So π1(K) is a nondegenerate

subcontinuum of X1, and therefore π1(K) contains a countable set A that separates

π1(K). Therefore π−1
1 (A) separates K. But π−1

1 (A) is the countable union of com-

pact zero dimensional sets. So π−1
1 (A) is zero dimensional. This is a contradiction.

Therefore dim(M) ≤ 1. �

6. Problems

It is not hard to �nd usc set valued functions on [0, 1] whose inverse limit yields

a continuum in the Hilbert cube homeomorphic to [0, 1] × [0, 1]. Such a copy of

[0, 1] × [0, 1] would contain all crossovers, but according to Theorem 4.1 it cannot

be shift invariant. Example 4.3 shows that [0, 1] × [0, 1] can be embedded in the

Hilbert cube so that it is shift invariant. But then it does not contain all crossovers.

Problem 6.1. Is there a one dimensional continuum that can not be embedded

in the Hilbert cube so that it is shift invariant and contains all crossovers? (W. T.

Ingram has asked if a simple triod can be embedded in the Hilbert cube so that it

is shift invariant and contains all crossovers.)

Problem 6.2. Is there a nondegenerate continuum X such that X × [0, 1] can be

embedded in the Hilbert cube so that it is shift invariant and contains all crossovers?
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