CONNECTED INVERSE LIMITS WITH A SET VALUED
FUNCTION

VAN NALL

1. INTRODUCTION

Inverse limits have been used by topologists for decades to study continua. More
recently inverse limits have begun to play a role in dynamical systems, at least
among continua theorists who are interested in the role that the topological struc-
ture of attractors, orbit spaces, or Julia sets play in the dynamics generated by
continuous functions between compact spaces. Also recently Mahavier[3] intro-
duced the study of inverse limits with set valued functions on intervals, and later
Mahavier and Ingram [2] generalized to set valued functions on compact sets. There
is a growing body of research into the structure of these generalized inverse limits.
It has even been suggested that they too could play a role in the study of dynamical
systems. That may be, but since we are at the beginning of the study of generalized
inverse limits there are some very basic things that need to be better understood.
For example, with continuous functions defined between one dimensional continua
the resulting inverse limit is a one dimensional continuum. In the case of gener-
alized inverse limits it is possible to have a set valued function between intervals
with a one dimensional graph such that the inverse limit with this function is infi-
nite dimensional, and it is possible to have a set valued function between intervals
with a connected graph that yields an inverse limit that is not connected. In fact
Greenwood and Kennedy have shown [5] that in the collection of all sets that are
generalized inverse limits with bonding maps whose graphs are closed connected
subsets of [0, 1] x [0, 1], those sets that are homeomorphic to the Cantor set form a
Gs set. In addition we do not have general criteria for determining whether or not
a given set valued function will produce the relatively rare occurance of a connected
generalized inverse limit. Indeed, it looks like such a set of criteria would be very
complicated. Our response will be to take a constructive approach to the problem
of connected generalized inverse limits. That is our goal is to provide techniques
to build set valued functions whose resulting inverse limits will be connected. For

example we consider questions like: If lim f is connected then what sorts of sets can
—
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be added to the graph of f to yield a set valued function g such that liing is still
connected?

2. DEFINITIONS AND NOTATION

A continuum is a compact and connected Hausdorff space. If {X;} is a countable
collection of compact spaces, then II$2; X; represents the countable product of the
collection {X;}, with the usual product topology. Elements of this product will
be denoted with bold type, and the coordinates of the element in italic type, so
that, for example, x = (z1, 22, x3,...) € 132, X;. For each i let m; : 1132, X; —
X; be defined by 7;(x) = m;((z1,22,23,...)) = 2;. The same notation will be
used in the case of II? , X;, that is m; : I, X; — X, is defined by m;(x) =
mi((z1, 22,23, ..., &) = ;. Also, for 1 < j <k <n,m,: I X; — Hf:in is
defined bym; 1. ((z1, z2, 23, ..., %n)) = (L5, Tjg1,- .., Tk)-

For each 4, let f; : X;;1 — 2% be a set valued function where 2% is the
hyperspace of compact subsets of X;. The inverse limit of the sequence of pairs
{(fi, Xi)}, denoted liin(fi,Xi), is defined to be the set of all (z1,x2,23,...) €
112, X; such that x; € fi(x;41) for each i. The functions f; are called bonding
maps, and the spaces X; are called factor spaces. The notation lim f; will also be
used for lzl_n( fi, X;) when the sets X; are understood, and the not;tion li(lnGi will
sometimes be used for limf; when G; is the graph of f;. In this paper we will
work exclusively with thé_ case where there is a single set valued function f from a
continuum X into 2%, and liinf = liinfi where f; = f for each 1.

A set valued function f: X — 2Y into the compact subsets of Y is upper semi-
continuous (usc) if for each open set V. C Y the set {x : f(x) C V} is an open set
in X. A set valued function f : X — 2Y where X is Hausdorff and Y is compact
is upper semi-continuous if and only if the graph of f is compact in X x Y [2,
Theorem 4, p. 58]. It is therefore easy to see that if f : X — 2Y is upper semi-
continuous and X and Y are compact Hausdorff spaces, and G is the graph of f,
then the set valued function f~! which has graph G=! = {(y,z) : (z,y) € G} is
also upper semi-continuous from Y to 2%. A set valued function f : X — 2Y will
be called surjective if for each y € Y there is a point € X such that y € f(z).
In this paper we are only considering inverse limits with a single bonding map and
we mean for that assumption to imply that wi1i+1(liinf) is homeomorphic to the
graph of f for each i. For that reason it is essential to require that the map f
be surjective. Finally, for a fixed continuum X and integers m and n the symbol
@ represents the binary operation @ : ' ;X x I, X — TI"41"X defined by

(iﬂl,l'g,l'g,...,xn) @ (ylvaayi?n"'»yM) = (ﬁclny,wS,~~~,$n7y1,y27y3,~-~7yn)~
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3. REsuLTS

It is easy to construct a set valued function with a connected graph whose com-
position with itself has a disconnected graph. Since the graph of the composition
of the function with itself is homeomorphic to the projection of the inverse limit
with this function into the first and third coordinates, such an inverse limit would
not be connected. A very simple example of this type is given below.

Before the first example we present a couple of theorems that can be used to
show the connectivity of a large class of inverse limits. The first is a generalization
of results of Ingram|[4, Theorems 3.3 and 4.2]. It is known that a surjective con-
tinuum valued upper semi-continuous function from a continuum X to 2% yields
a connected inverse limit [1, Theorem 4.7]. So we want to know when the inverse
limit with a function that is the union of continuum valued functions is connected.
The following is the most general possible union theorem for this type of function in
the sense that the most general union theorem must require that union be closed so
that the resulting map is upper semi-continuous, the most general union theorem
must require that the union be connected since the graph of the function used to
form the inverse limit is a continuous projection of the inverse limit, and finally
the restriction to surjective set valued functions was explained earlier, so the most
general union theorem should require that the union is the graph of a surjective

function.

Theorem 1. Suppose X is a compact metric space, and {Fu} ., 45 collection
of closed subsets of X x X such that for each x € X and each o € A the set

{ye X : (z,y) € F} is nonempty and connected, and such that F = |J F, is a
a€EA
closed connected subset of X x X such that for eachy € X the set{x € X : (z,y) € F}

is nonempty. Then limF is connected.
+—

Proof. Assume X is a compact metric space and {Fy, } ., is collection of closed sub-
sets of X x X such that for each € X and each o € A theset {y € X | (z,y) € F,.}

is nonempty and connected, and such that F' = |J F, is a closed connected subset
aEA
of X x X such that for each y € X the set {x € X | (z,y) € F'} is nonempty. Let

G1 = X, and for each integer n > 1 let G,, be the set of all (z1,x2,...,2,) € TP 1 X
such that (x;11,2;) € Ffori=1,...,n—1. For each integer n > 1 and each o € A
let G, o be the set of all (z1,22,...,2,) € Gy such that (x2,21) € F,. Then,

clearly each G,, is compact and G, = |J Gp,a-
aEA
Note that G5 is homeomorphic to F. So G; and G5 are compact and con-

nected. Assume n > 2 and G,_; is connected. Let ¥, : G, o — G,—1 be
the continuous function defined by ¥(x) = mo,n(x). If y =(y1,¥2,...,Yn—1) €
Gn_1, then ¥ y) = {(z,y1,92,---Yn_1) | (y1,2) € G,} is homeomorphic to
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{z | (y1,2) € Go} which by assumption is nonempty and connected. Therefore
U, is a monotone continuous surjection onto a compact connected set. It follows
that Gy, o is connected for each a.

Note that since for each y € X the set {x € X | (z,y) € F'} is nonempty, each
coordinate projection of G, is X, and the projection onto the first two coordinates
of G,, is F~'. Now suppose H and K are nonempty closed subsets of G,, such
that G, = HU K. Let H* be the set of all pairs (a,b) € F such that there is a
(y1,Y2,...yn) € H such that b = z1 and a = x5, and let K* be the set of all pairs
(a,b) € F such that there is a (y1,¥y2,-..yn) € K such that b = x; and a = xs.
Since H* and K* are the respective projections of H and K onto their first two
coordinates, H* and K* are continuous images of H and K, and therefore they are
nonempty closed sets whose union is the connected set F. So H* N K* # (). Let
(¢,d) € H*NK*. There exists y = (y1,Y2,- .- yn) € H such that y; = c and y2 = d,
there exists z = (21, 29,...2,) € K such that z; = ¢ and 22 = d, and there exist
a € A such that (d,c¢) € F,. Thus, the connected set G, ,, contains both y and z.
It follows that H N K # ), and therefore G,, is connected.

By induction it follows that G,, is connected for each n. For each n let G}, be
the set of all (z1,x2,...,%n,...) € 132, X such that (z1,22,...2,) € Gp. Then,

oo

G} is compact and connected for each n, and since limF' = () G% , it follows that
A n=1

limF' is connected . O

—

Lemma 2. Suppose X is a compact Hausdorff continuum, and f : X — 2% is

an upper semi-continuous set valued function, and, for each n, G, is the set of all

(1,2, ..., 2n) € TP X such that x;41 € f(z;) fori=1,...,n—1. Then limf is
“—

connected if and only if G, is connected for each n .

Proof. The proof is contained in the last two sentences of the proof of Theorem
1. O

Theorem 3. Suppose X is a compact Hausdorff continuum, and f : X — 2% is
a surjective upper semi-continuous set valued function. Then limf is connected if
+—

and only if limf~! is connected.
—

Proof. Assume X is a compact Hausdorff continuum, and f : X — 2% is a surjective
upper semi-continuous set valued function. For each n let G,, be the set of all
(x1,22,...,2,) € I, X such that z; € f(x;41) for each i such that 1 <i <n-—1,
and let G, ! be the set of all (x1,z2,...,2,) € II"_; X such that x; € f~1(z;41)
for each ¢ such that 1 < ¢ < n — 1. Then (z1,z9,...,z,) € G, if and only if
(Tn,Tn_1,...,21) € G;;1. Therefore G,, and G, are homeomorphic. Since liinf

is connected if and only if (3, is connected for each n by Lemma 2, and limf~!
+—
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is connected if and only if G,;! is connected for each n, it follows that limf is
—

connected if and only if limf~! is connected. O
P

‘\'\,
(1,5) (1,.5)
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FIiGURE 3.1.

Example 4. Define f : [0,1] — 2[%U to be the function whose graph is the
union of the following two sets: A = {(z,y) : 0<2 <1 andy =1z} and B =
{(w,y) : % <z<1 andy =2z — 1}. In Figure 1, A is the graph of fi, and B is
the graph of fs. The function f is upper semi-continuous since the graph of f is
compact [2, Theorem 4, p. 58| , and the graph of f is clearly connected. It is
easy to see that the graph of f o f is not connected since the point (1,0) is an
isolated point in the graph of f o f = f2. Therefore liinf = liin(A U B) is not
connected. Let us label 4y = {(z,y) € A : = < %}, Ay ={(z,y) €A : > %},
B = {(x,y) €eB :z< %}, and By = {(Jc,y) €EB :z> %} Then A and A; UB,
are each the graph of a continuous function from [0, 1] into [0,1]. Also the set
AU (A1 U By) is closed and connected and is the graph of a surjective upper semi-
continuous function from [0, 1] to 2/, Therefore, by Theorem 1, liinAU(Al UB3) =
liinAUBg is connected, whereas it has been noted that li(Ln(AUBg) UB; = liinAUB
is not connected. Similarly, with the use of Theorems 1 and Theorem 3 it can be
seen that liinAl U B is connected but liT(Al UB)U Ay = liinA U B is not con-

nected. This demonstrates the necessity in Theorem 1 for the assumption that each
function have domain all of X. Also A; U B is the graph of a very simple upper
semi-continuous function with a connected inverse limit such that if one adds the
set A which is the graph a straight line defined on all of [0, 1] one gets AU B which
has disconnected inverse limit. This raises the question that motivates the next two
theorems. Which is if limf is connected then what sort of set can one add to the
graph of f and obtain t?le graph of a set valued function with inverse limit that is

still connected?
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The following theorem was first suggested by Chris Mouron. Its usefulness is
certainly hindered by the difficulty of checking the condition fg = ¢gf except of

course in the case where g is the identity function.

Theorem 5. Suppose X is a compact Hausdorff continuum, and f : X — 2% is

a surjective upper semi-continuous set valued function such that limf is connected,
+—

and g : X — X is a continuous function such that fg = gf, and the graphs of f

and g are not disjoint. Then limf U g is connected.
—

Proof. Assume X is a compact Hausdorff continuum, and f : X — 2% is a surjective
upper semi-continuous set valued function such that limf is connected, and g :
X — X is a continuous function such that fg = gf, ;Eld the graphs of f and g
are not disjoint. For each positive integer n > 1 let G, (f U g) be the set of all
(z1,T,...,Ty) € ilzllX such that z; € fUg(zi41) for 1 < i < n, let G,(f) be
the set of all (z1,za,...,2,) € Gp(f Ug) such that x; € f(x;41) for each i < n,
and for each j < n let G, ; be the set of all (z1,22,...,2,) € Gn(f Ug) such
that z; = g(zj4+1). We will show that G, (f U g) is connected for each n > 1.
Since G3(f U g) is homeomorphic to the graph of f U g, it is connected. Assume
G,-1(f Uyg) is connected.

From the definitions above it follows that G, (f Ug) = G,p(f) U jgllGnJ Since

the graphs of f and g are not disjoint there is a point z in X such that g(z) € f(z),
and for each j < n there is an x € G, (f) such that mj;1(x) = 2. Therefore
x € Go(f) NG, ;. Since liinf is connected, G,,(f) is connected by Lemma ? So we
will show that G,, ; is connected for each j < n from which it follows that G,,(fUg)
is connected.

To see that G, 1 is connected note that the function that sends (z1,z2, ..., xy) €
Gn-1 to (9(x1), 21,22, ..., Tp) € Gy,1 is @ homeomorphism from G,,_1(f U g) onto
Gn,1.

For each j < n consider the function ¥; : II7_; X — II7"; X defined by ¥;(x) =
m1,;(x) @ (g(mj12(x))) ® Tj42,n(x). It is obvious that each ¥; is continuous. We
will show that the restriction of ¥; to G, ; maps Gy, j onto Gy, j41-

Let x be an element of G, ;. That is, assume x € G, and assume 7;(x) =
g( )). Now either m;41(x) = g(mj42(x)) or mj41(x) € f(mj2(x)). U mjt1(x) =
g(mj+2(x)), then x € Gy j+1, and ¥(x) = x. So U,;(x)) € Gy j41. If mj11(x) €
f(mjta(x)) then m;(x) € g(f(mjt2(x))) = fl9(mj42(x)). So ¥;(x) = m;(x) &
(9(mj42(%))) ® Tj42,n(x) is an element of G, j41. Therefore ¥; maps G, ; into

mip1(x

Gn jt+1-

Now let x be an element of G, j4+1. That is, assume x € G,, and assume
mTj+1(x) = g(mj2(x). Now either m;(x) = g(mj41(x)) or mj(x) € f(mjt1(x)).
If mj(x) = g(mj+1(x)), then x € G, 5, and ¥;(x) = x. So x € V;(G, ;). If



CONNECTED INVERSE LIMITS WITH A SET VALUED FUNCTION 7

mj(x) € f(mj+1(x)) then m;(x) € f(g(mj+2(x))) = g(f(mj42(x)). So there is a
z € f(mj+2(x)) such that 7;(x) = g(z). Therefore w = 71 ;(x) ® (2) ® Tj42,n(X)
is an element of G, ;, and ¥;(w) = x. Again this implies that x € U;(G, ;).
Therefore ¥; maps Gy, ; onto Gy, j41.

It follows then that each G, ; is connected, and therefore, GG, is connected. By
induction we have that each G,, is connected. So, from Lemma 2 it follows that

limf U g is connected. O
“—

The example above shows that one must be very careful about what one adds
to the graph of a function whose inverse limit is connected in order to have the
union of the two graphs be a function with connected inverse limit. For example it
is possible to add the graph of a straight line defined on all of [0, 1] to the graph of
a very simple set valued function f : [0,1] — [0, 1] with connected liinf and have
the inverse limit be not connected. We will show that under some conditions one
can add a section of the graph of the identity function or a section of the graph of

a constant function and the inverse limit will remain connected.

Theorem 6. Suppose X is a compact Hausdorff continuum, and f : X — 2% is
a surjective upper semi-continuous set valued function such that limf is connected,
D is a closed subset of X, and g : D — X is a function such Emt the graph of
fUg is connected, and if x is in the boundary of D in X, then g(z) € f(x). If, in
addition, the function g is defined by g(x) = x for each x € D or for some a € X
the function g is defined by g(x) = a for each x € D, then lzlnf U g is connected.

Proof. Assume X is a compact Hausdorff continuum, and f : X — 2% is a surjective
upper semi-continuous set valued function such that lim f is connected, D is a closed
subset of X, and g : D — X is a function such that t}Te graph of fUg is connected,
and if z is in the boundary of D in X, then g(x) € f(z). Assume also that g(z) =
for each z € D.

For each natural number n let G,,(fUg) be the set of all (z1,x9, ..., z,) € I 1 X
such that z; € fUg(z;41) for 1 <i < n, let G,(f) be the set of all (z1,x2,...,2,) €
IT?_, X such that x; € f(z;41) for 1 <i<n,and for each 0 < j <n—1let GJ be
the set of all (z1,xa,...,2,) € G, (f Ug) such that z; € f(z;41) forn —j <i < n.
Note that for each n we have G,,(f) =G ' c G2 cC---CGY =G,(fUg), and
note that G, (f) is connected for each n since liin f is connected.

Note also that G} = Go(f), which is connected, and GY is homeomorphic to the
graph of f U g which is connected.

Next we will show that if n > 2 and G7,_; is connected for each 1 < j < n — 2,

then G{L is connected for each 1 < k < n — 1. So assume n > 2 and sz_l is
connected for each 1 < j < n — 2. Let k be a non negative integer such that

k <n—1. Let x = (21,22, ...,7,) € GF. It will be shown that either x € GE*1 or
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there is a continuum in G¥ that contains x and a point in GE*1. So, assume x is not
in GE+L. Then 7, _j,_1(x) € fUG(Th_x(x)), and m,_p_1(x) € X\ f(7n_1(x)). So,
Tn—k—1(X) = g(Tn—k(X)) = Tpn_r(x), and m,_r(x) € D. Let X' = 11 p_g—2(x) ®

th

Tn—kn(X). That is, x” is obtained by removing the (n — k — 1)*" coordinate of x.

Note that x' € GF_.

Since the graphs of f and ¢ are closed and the graph of f U g is connected,
there is a point y in GX_; such that 7, x(y) € D, and 7, 1(y) = g(mn_1(y)) €
f(mn_i(y)). Since G¥_, is connected, there is a continuum J in G¥_; that contains
x' andy. If D C m,_g(J), then let K = J, and let y’ =y. If D is not contained
in m,_(J), then let W be the set of all z € J such that 7,_;(z) € D, and let
K be the component of W which contains x’. Then K contains a point y’ in
the boundary of W in J. It follows that m,_x(y’) is in the boundary of D in
X, and therefore 7,_;(y') = g(mn-r(y")) € f(mn—r(y’)). In either case K is a
continuum such that m,_(K) C D and K contains x’ and a point y’ such that
Tnk(y) = 9(mn_i(y") € f(mn_i(y’)). Now let F : K — G* be defined by
F(z) = m1n-k(2) ® Th—kn—1(z). That is, insert a new coordinate between the
(k — 1)*" coordinate and the k" coordinate of z equal to the k** coordinate of z.
This map F is clearly a homeomorphism on K, and K* = F(K) is a continuum in
Gk that contains x since x = F(x’) and the point F(y’) which is in GE+1 .

By the same argument either F(y’) is contained in GE*! or there is a continuum
in GE*1 that contains F(y’) and a point in G¥*2. Continuing in this way there is
a continuum in GE that contains x and a point in G?~! = G,,(f). Since G,.(f) =
Gl cGr2cC .- C Gk, and G,(f) is connected, it follows that G is connected.

This concludes the inductive proof that GY, is connected for each n and each
j < n— 1. But then G? is connected for each n, and GY = G,,(f Ug) . Tt follows
that limf U g is connected.

Nov: assume there is an a € X such that g(x) = a for each € D. The proof for
this case begins just like the proof above.

Note that G3 = G(f), which must be connected since liinf is connected, and
GY is homeomorphic to the graph of f U g which is connected.

Next we will show that if n > 2 and G7,_; is connected for each 0 < j < n — 2,
then GJ is connected for each 1 < k < n — 1. So assume n > 2 and G’ _,
is connected for each non negative integer j < n — 2. Let k be a non negative
integer such that k < n — 1. Let x = (x1,72,...,7,) € GF. Tt will be shown
that either x € GE*! or there is a continuum in G¥ that contains x and a point
in G+, So, assume x is not in GE*1. Then 7, _4_1(x) € f U g(m,_1(x)) , and
Tn—k—1(x) € X \ f(mn_k(x)). Up to this point the proof has been identical to the

proof above for g(x) = x. Here there is a small difference. In this case what follows
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is that m,—gx—1(x) = a = g(mp—k(x)) and m,_x(x) € D. So let X' = 7, ,(x) and
note that in this case x' € GE_, .| = Gp_p1(f).

Since the graphs of f and g are closed, and the graph of fUg is connected, there
is a point y in G%_, | such that m(y) € D, and m(y) = g(m(y)) € f(m(y)).
Since GF_, | is connected, there is a continuum J in GF_, ., that contains x’
and y. If D C m;(J), then let K = J, and let y’ = y. If D is not contained in
m1(J), then let W be the set of all z € J such that m1(z) € D, and let K be the
component of W which contains x’. Then K contains a point y’ in the boundary of
W in J. It follows that 71 (y’) is in the boundary of D in X, and therefore 71 (y’) =
g(m1(y") € f(m1(y’'))- In either case K is a continuum such that m,_,(K) C D,
and K contains x” and a point y’ such that m (y’) = g(mi(y’)) € f(m1(y’)). Note
that since the first coordinate of each point K is in D if we attach mq ,_—1(x)
to any point in K the result is a point GE. That is, let ' : K — G* be defined
by F(z) = m1n—k—1(x) ® z. This map F is clearly a homeomorphism on K, and
K* = F(K) is a continuum in G¥ that contains x since x = F(x’), and the point
F(y’) which is in GE*1 . (The rest of the proof is identical to the case where
g(x) = x. Tt is included below for completeness.)

By the same argument either F'(y’) is contained in GX*! or there is a continuum
in GE*! that contains F(y’) and a point in G¥*2. Continuing in this way there is
a continuum in G¥ that contains x and a point in GP~! = G,,(f). Since G,,(f) =
G-l cGr=2c..-C Gk, and G, (f) is connected, it follows that G is connected.

This concludes the inductive proof that GY is connected for each n and each
j <n — 1. But then G? is connected for each n, and GY = G,,(f Ug) . It follows
that 1i£1 f Ug is connected. O

When we apply the results in Theorem 6 and Theorem 3 to the case where
f:0,1] — 2% and liinf is connected we see that if we add to the graph of f
a horizontal line of the form {(z,a) : ¢ < x < d} where {c,d} C f~!(a) U{0,1}
or we add to the graph of f a vertical line of the form {(a,z) : ¢ <z < d} where
{¢,d} C f(a)U{0,1} then the inverse limit with this new set valued function will
be connected.

For an upper semi-continuous set valued function f : X — 2%, and a continuous
function g : X — X, the upper semi-continuous set valued function g~! fg is given
by y € g~ fg(z) if and only if g(y) € f(g(x)). We say an upper semi-continuous
function h : X — 2% is a semi-conjugate of an upper semi-continuous function
f: X — 2% if and only if there is a continuous surjective function ¢ : X — X
such that gh = fg. It is easy to check that this requirement is equivalent to saying
h =g 'fg. It is also easy to see that h being semi-conjugate of f does not imply
that f is a semi-conjugate of h.
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Theorem 7. Suppose X is a compact Hausdorff continuum, f : X — 2% is a
surjective upper semi-continuous set valued function, g : X — X is continuous and

surjective, and limg~'fg is connected, then limf is connected.
— —

Proof. Assume X is a compact Hausdorff continuum, f : X — 2% is a sur-
jective upper semi-continuous set valued function, g : X — X is continuous
and surjective, and limg~!fg is connected. For each n let G, be the set of all
(x1,22,...,2y) € H?:TX such that z; € f(z;41) for i < n — 1, and for each n let
G!, be the set of all (z1,xs,...,2,) € I, X such that z; € g~ ' f(g(xi41)) for
i <n — 1. It will be shown that the continuous function that sends (x1,x2, ..., )
to (g(z1),g(x2),...,g(x,)) maps G, onto G,.

Let (z1,22,...,2,) be an element of G’,. Since z; € g 'fg(w;11) for each
i < n—1, it is true that g(z;) € f(g(x;y1)) for each ¢ < n — 1. Therefore
(9(x1),9(x2),...,9(xn)) € G,. Now for each (y1,92,...,yn) € Gp,let (x1,22,...,2,)
be an element of I ; X such z; € g~*(y;) for each i < n. Since for each i < n it
is true that y; € f(yi+1) = f(g(zi+1)), it follows that for each ¢ < n it is true that
zi € g yi) € g f(g(xiz1)). Thus (z1,9,...,7,) € G'. Therefore the contin-
uous function that sends (z1, s, ..., 2y) to (g(z1),g(z2),...,g(x,)) maps G, onto
Gp.

Since liing*1 fg is connected, G), is connected for each n. Therefore G,, is con-

nected for each n. Thus limf is connected by Lemma 2. O
—

The previous theorem is most likely to be useful for producing new functions with
disconnected inverse limit since if f : X — 2% is a set valued function such that
limf is not connected, then for any continuous function ¢ : X — X the limg~!fg
“— “—

will also be not connected.
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