Face Recognition with GNU
Octave/MATLAB

Philipp Wagner
http://www.bytefish.de
July 18, 2012

Contents

1 Introduction 1

2 Face Recognition 2
 2.1 Face Database ... 2
 2.1.1 Reading the images with GNU Octave/MATLAB 3
 2.2 Eigenfaces ... 4
 2.2.1 Algorithmic Description 4
 2.2.2 Eigenfaces in GNU Octave/MATLAB 5
 2.3 Fisherfaces ... 8
 2.3.1 Algorithmic Description 9
 2.3.2 Fisherfaces in GNU Octave/MATLAB 10

3 Conclusion 13

1 Introduction

In this document I'll show you how to implement the Eigenfaces [13] and Fisherfaces [3] method with GNU Octave/MATLAB, so you’ll understand the basics of Face Recognition. All concepts are explained in detail, but a basic knowledge of GNU Octave/MATLAB is assumed. Originally this document was a Guide to Face Recognition with OpenCV. Since OpenCV now comes with the cv::FaceRecognizer, this document has been reworked into the official OpenCV documentation at:

I am doing all this in my spare time and I simply can’t maintain two separate documents on the same topic any more. So I have decided to turn this document into a guide on Face Recognition with GNU Octave/MATLAB only. You’ll find the very detailed documentation on the OpenCV cv::FaceRecognizer at:

- github.com/bytefish
- github.com/bytefish/facerecognition_guide

By the way you don’t need to copy and paste the code snippets, all code has been pushed into my github repository:
Everything in here is released under a BSD license, so feel free to use it for your projects. You are currently reading the GNU Octave/MATLAB version of the Face Recognition Guide, you can compile the Python version with make python.

2 Face Recognition

Face recognition is an easy task for humans. Experiments in [6] have shown, that even one to three day old babies are able to distinguish between known faces. So how hard could it be for a computer? It turns out we know little about human recognition to date. Are inner features (eyes, nose, mouth) or outer features (head shape, hairline) used for a successful face recognition? How do we analyze an image and how does the brain encode it? It was shown by David Hubel and Torsten Wiesel, that our brain has specialized nerve cells responding to specific local features of a scene, such as lines, edges, angles or movement. Since we don’t see the world as scattered pieces, our visual cortex must somehow combine the different sources of information into useful patterns. Automatic face recognition is all about extracting those meaningful features from an image, putting them into a useful representation and performing some kind of classification on them.

Face recognition based on the geometric features of a face is probably the most intuitive approach to face recognition. One of the first automated face recognition systems was described in [9]: marker points (position of eyes, ears, nose, ...) were used to build a feature vector (distance between the points, angle between them, ...). The recognition was performed by calculating the euclidean distance between feature vectors of a probe and reference image. Such a method is robust against changes in illumination by its nature, but has a huge drawback: the accurate registration of the marker points is complicated, even with state of the art algorithms. Some of the latest work on geometric face recognition was carried out in [4]. A 22-dimensional feature vector was used and experiments on large datasets have shown, that geometrical features alone don’t carry enough information for face recognition.

The Eigenfaces method described in [13] took a holistic approach to face recognition: A facial image is a point from a high-dimensional image space and a lower-dimensional representation is found, where classification becomes easy. The lower-dimensional subspace is found with Principal Component Analysis, which identifies the axes with maximum variance. While this kind of transformation is optimal from a reconstruction standpoint, it doesn’t take any class labels into account. Imagine a situation where the variance is generated from external sources, let it be light. The axes with maximum variance do not necessarily contain any discriminative information at all, hence a classification becomes impossible. So a class-specific projection with a Linear Discriminant Analysis was applied to face recognition in [3]. The basic idea is to minimize the variance within a class, while maximizing the variance between the classes at the same time (Figure 1).

Recently various methods for a local feature extraction emerged. To avoid the high-dimensionality of the input data only local regions of an image are described, the extracted features are (hopefully) more robust against partial occlusion, illumination and small sample size. Algorithms used for a local feature extraction are Gabor Wavelets ([14]), Discrete Cosinus Transform ([5]) and Local Binary Patterns ([1, 11, 12]). It’s still an open research question how to preserve spatial information when applying a local feature extraction, because spatial information is potentially useful information.

2.1 Face Database

I don’t want to do a toy example here. We are doing face recognition, so you’ll need some face images! You can either create your own database or start with one of the available databases, face-rec.org/databases gives an up-to-date overview. Three interesting databases are¹:

AT&T Facedatabase The AT&T Facedatabase, sometimes also known as ORL Database of Faces, contains ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement).

¹Parts of the description are quoted from face-rec.org.
Yale Facedatabase A The AT&T Facedatabase is good for initial tests, but it’s a fairly easy database. The Eigenfaces method already has a 97% recognition rate, so you won’t see any improvements with other algorithms. The Yale Facedatabase A is a more appropriate dataset for initial experiments, because the recognition problem is harder. The database consists of 15 people (14 male, 1 female) each with 11 grayscale images sized 320×243 pixel. There are changes in the light conditions (center light, left light, right light), facial expressions (happy, normal, sad, sleepy, surprised, wink) and glasses (glasses, no-glasses).

The original images are not cropped or aligned. I’ve prepared a Python script available in src/py/crop_face.py, that does the job for you.

Extended Yale Facedatabase B The Extended Yale Facedatabase B contains 2414 images of 38 different people in its cropped version. The focus is on extracting features that are robust to illumination, the images have almost no variation in emotion/occlusion/.... I personally think, that this dataset is too large for the experiments I perform in this document, you better use the AT&T Facedatabase. A first version of the Yale Facedatabase B was used in [3] to see how the Eigenfaces and Fisherfaces method (section 2.3) perform under heavy illumination changes. [10] used the same setup to take 16128 images of 28 people. The Extended Yale Facedatabase B is the merge of the two databases, which is now known as Extended Yalefacedatabase B.

The face images need to be stored in a folder hierarchy similar to $<\text{database name}>/<\text{subject name}>/<\text{filename}>.<\text{ext}>$. The AT&T Facedatabase for example comes in such a hierarchy, see Listing 1.

```
Listing 1:
philipp@mango:~/facerec/data/at$ tree
|-- README
|-- s1
| |-- 1.pgm
| | |-- ...
| |-- 10.pgm
|-- s2
| |-- 1.pgm
| | |-- ...
| |-- 10.pgm
... 
|-- s40
| |-- 1.pgm
| | |-- ...
| |-- 10.pgm
```

2.1.1 Reading the images with GNU Octave/MATLAB
First we’ll need a function to list the files for a given path. This can be done with a function similar to Listing 2.

```
Listing 2: src/m/list_files.m

function L = list_files(path_fn)
    % get information about given path_fn
    L = dir(path_fn);
    % ... ignore . and ..
    L = L(3:length(L));
    % ... turn into a cell array
    L = struct2cell(L);
    % ... and only keep the filenames.
    L = L(1,:);
end
```

The function in Listing 3 can be used to read in the images for each subfolder of a given directory. Each directory is given a unique (integer) label, you probably want to store the folder name as well. The function returns the images as a data matrix and the corresponding classes, the width and height of the images (we’ll need this in later code). This function is really basic and there’s much to enhance, but it does its job.

3
function [X y width height] = read_images(path_fn)
 % get files for a given path
 folder = list_files(path_fn);
 % initialize the empty return values
 X=[];
 y=[];
 width=0;
 height=0;
 % start counting with class index 1
 classIdx = 1;
 % for each file...
 for i=1:length(folder)
 subject = folder{i};
 % ... get files in this subdir
 images = list_files([path_fn, filesep, subject]);
 % ... ignore a file or empty folder
 if(length(images) == 0)
 continue;
 end
 % ... for each image
 for j=1:length(images)
 % ... get the absolute path
 filename = [path_fn, filesep, subject, filesep, images{j}];
 % ... read the image
 T = double(imread(filename));
 % ... get the image information
 [height width channels] = size(T);
 % ... and grayscale if it's a color image
 if(channels == 3)
 T = 0.2989 * T(:,:,1) + 0.5870*T(:,:,2) + 0.1140*T(:,:,3);
 end
 % ... reshape into a row vector and append to data matrix
 X = [X; reshape(T,1,width*height)];
 % ... append the corresponding class to the class vector
 y = [y, classIdx];
 end
 % ... increase the class index
 classIdx = classIdx + 1;
 end % ... for-each folder.
end

2.2 Eigenfaces

The problem with the image representation we are given is its high dimensionality. Two-dimensional $p \times q$ grayscale images span a $m = pq$-dimensional vector space, so an image with 100×100 pixels lies in a 10,000-dimensional image space already. That’s way too much for any computations, but are all dimensions really useful for us? We can only make a decision if there’s any variance in data, so what we are looking for are the components that account for most of the information. The Principal Component Analysis (PCA) was independently proposed by Karl Pearson (1901) and Harold Hotelling (1933) to turn a set of possibly correlated variables into a smaller set of uncorrelated variables. The idea is that a high-dimensional dataset is often described by correlated variables and therefore only a few meaningful dimensions account for most of the information. The PCA method finds the directions with the greatest variance in the data, called principal components.

2.2.1 Algorithmic Description

Let $X = \{x_1, x_2, \ldots, x_n\}$ be a random vector with observations $x_i \in \mathbb{R}^d$.

1. Compute the mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$ \hspace{1cm} (1)

2. Compute the covariance matrix Σ

$$\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T$$

3. Find the eigenvalues λ_i and eigenvectors v_i of Σ such that $\Sigma v_i = \lambda_i v_i$.

4. Arrange the eigenvectors in the matrix V and the eigenvalues on the diagonal of the diagonal matrix Λ.

5. Transform the original data X to the principal components Z using $Z = XV$.

The columns of V are the principal components and the eigenvalues λ_i indicate their importance.
2. Compute the the Covariance Matrix S

$$S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T$$

(2)

3. Compute the eigenvalues λ_i and eigenvectors v_i of S

$$S v_i = \lambda_i v_i, \ i = 1, 2, \ldots, n$$

(3)

4. Order the eigenvectors descending by their eigenvalue. The k principal components are the eigenvectors corresponding to the k largest eigenvalues.

The k principal components of the observed vector x are then given by:

$$y = W^T(x - \mu)$$

(4)

where $W = (v_1, v_2, \ldots, v_k)$. The reconstruction from the PCA basis is given by:

$$x = Wy + \mu$$

(5)

The Eigenfaces method then performs face recognition by:

1. Projecting all training samples into the PCA subspace (using Equation 4).
2. Projecting the query image into the PCA subspace (using Listing 5).
3. Finding the nearest neighbor between the projected training images and the projected query image.

Still there’s one problem left to solve. Imagine we are given 400 images sized 100 × 100 pixel. The Principal Component Analysis solves the covariance matrix $S = XX^T$, where $\text{size}(X) = 10000 \times 400$ in our example. You would end up with a 10000×10000 matrix, roughly 0.8GB. Solving this problem isn’t feasible, so we’ll need to apply a trick. From your linear algebra lessons you know that a $M \times N$ matrix with $M > N$ can only have $N - 1$ non-zero eigenvalues. So it’s possible to take the eigenvalue decomposition $S = XX^T$ of size $N \times N$ instead:

$$X^T X v_i = \lambda_i v_i$$

(6)

and get the original eigenvectors of $S = XX^T$ with a left multiplication of the data matrix:

$$XX^T (X v_i) = \lambda_i (X v_i)$$

(7)

The resulting eigenvectors are orthogonal, to get orthonormal eigenvectors they need to be normalized to unit length. I don’t want to turn this into a publication, so please look into [7] for the derivation and proof of the equations.

2.2.2 Eigenfaces in GNU Octave/MATLAB

Translating the PCA from the algorithmic description of section 2.2.1 to GNU Octave/MATLAB is almost trivial. Don’t copy and paste from this document, the source code is available in folder src/m. Listing 4 implements the Principal Component Analysis given by Equation 1, 2 and 3. It also implements the inner-product PCA formulation, which occurs if there are more dimensions than samples. You can shorten this code, I just wanted to point out how it works.

Listing 4: src/m/pca.m

```matlab
function [W, mu] = pca(X, y, k)
    [n,d] = size(X);
    mu = mean(X);
    Xm = X - repmat(mu , rows(X), 1);
    if(n>d)
        C = Xm'*Xm;
        [W,D] = eig(C);
        % sort eigenvalues and eigenvectors
        [D, i] = sort(diag(D), 'descend');
    ```
W = W(:,i);
\% keep k components
W = W(:,1:k);

else
C = Xm*Xm';
\%C = cov(Xm');
[W,D] = eig(C);
\% multiply with data matrix
W = Xm'*W;
\% normalize eigenvectors
for i=1:n
W(:,i) = W(:,i)/norm(W(:,i));
end
\% sort eigenvalues and eigenvectors
[D, i] = sort(diag(D), 'descend');
W = W(:,i);
\% keep k components
W = W(:,1:k);
end
end

The observations are given by row, so the projection in Equation 4 needs to be rearranged a little:

Listing 5: src/m/project.m

```matlab
function Y = project(W, X, mu)
if(nargin<3)
    Y = X*W;
else
    Y = (X-repmat(mu, rows(X), 1))*W;
end
end
```

The same applies to the reconstruction in Equation 5:

Listing 6: src/m/reconstruct.m

```matlab
function X = reconstruct(W, Y, mu)
if(nargin<3)
    X = Y * W';
else
    X = Y * W' + repmat(mu, rows(Y), 1);
end
end
```

Now that everything is defined it’s time for the fun stuff. The face images are read with Listing 3 and then a full PCA (see Listing 4) is performed.

Listing 7: src/m/example_eigenfaces.m

```matlab
% load function files from subfolders aswell
addpath (genpath ('.'));
\% read images
[X,y,w,h] = read_images('/home/philipp/facerec/data/at');
\% n - number of samples
\% d - dimensionality
[n,d] = size(X);
\% perform a full pca
[W,mu] = pca(X,y,n);
```

That’s it already. Pretty easy, no? Each principal component has the same length as the original image, thus it can be displayed as an image. \cite{13} referred to these ghostly looking faces as *Eigenfaces*, that’s where the Eigenfaces method got its name from. We’ll now want to look at the Eigenfaces, but first of all we need a method to turn the data into a representation GNU Octave/MATLAB understands. The eigenvectors we have calculated can contain negative values, but the image data is excepted as unsigned integer values in the range of 0 to 255. So we need a function to normalize the data first (Listing 8):

Listing 8: src/m/normalize.m

```matlab
function X = normalize(X, l, h)
```
Listing 9 then turns the image into the expected representation, by first normalizing the values to a range between [0, 255] and then casting the matrix to unsigned integer values.

Listing 9: src/m/toGrayscale.m

```matlab
function Y = toGrayscale(X, width, height)
    Y = normalize(X, 0, 255);
    if(nargin==3)
        Y = reshape(Y, height, width);
    end
    Y = uint8(Y);
end
```

Listing 10 then does a subplot for the first (at most) 16 Eigenfaces.

Listing 10: src/m/example_eigenfaces.m

```matlab
% plot eigenfaces
figure; hold on;
title('Eigenfaces (AT&T Facedatabase)');
for i=1:min(16,n)
    subplot(4,4,i);
    eigenface_i = toGrayscale(W(:,i), w, h);
    imshow(eigenface_i);
    colormap(jet(256));
    title(sprintf('Eigenface #%i', i));
end
```

I’ve used the jet colormap, so you can see how the grayscale values are distributed within the specific Eigenfaces. You can see, that the Eigenfaces do not only encode facial features, but also the illumination in the images (see the left light in Eigenface #4, right light in Eigenfaces #5):
We’ve already seen in Equation 5, that we can reconstruct a face from its lower dimensional approximation. So let’s see how many Eigenfaces are needed for a good reconstruction. I’ll do a subplot with 10, 30, …, 310 Eigenfaces:

Listing 11: src/m/example_eigenfaces.m

```matlab
% plot eigenfaces reconstruction
steps = 10:20:min(n,320);
Q = X(:,1); % first image to reconstruct
figure; hold on;
title('Reconstruction (AT&T Facedatabase)');
for i=1:min(16, length(steps))
    subplot(4,4,i);
    numEvs = steps(i);
P = project(W(:,1:numEvs), X(:,1), mu);
R = reconstruct(W(:,1:numEvs),P,mu);
comp = toGrayscale(R, w, h);
imshow(comp);
    title(sprintf('%i Eigenvectors', numEvs));
end
```

10 Eigenvectors are obviously not sufficient for a good image reconstruction, 50 Eigenvectors may already be sufficient to encode important facial features. You’ll get a good reconstruction with approximately 300 Eigenvectors for the AT&T Facedatabase. There are rule of thumbs how many Eigenfaces you should choose for a successful face recognition, but it heavily depends on the input data. [15] is the perfect point to start researching for this.

The k-Nearest Neighbor matching is left out for this example. Please see the GNU Octave/MATLAB code at https://github.com/bytefish/facerec/tree/master/m to see how it is implemented, it’s all there.

2.3 Fisherfaces

The Linear Discriminant Analysis was invented by the great statistician Sir R. A. Fisher, who successfully used it for classifying flowers in his 1936 paper *The use of multiple measurements in taxonomic problems* [8]. But why do we need another dimensionality reduction method, if the Principal Component Analysis (PCA) did such a good job?

The PCA finds a linear combination of features that maximizes the total variance in data. While this is clearly a powerful way to represent data, it doesn’t consider any classes and so a lot of
discriminative information may be lost when throwing components away. Imagine a situation where the variance is generated by an external source, let it be the light. The components identified by a PCA do not necessarily contain any discriminative information at all, so the projected samples are smeared together and a classification becomes impossible.

In order to find the combination of features that separates best between classes the Linear Discriminant Analysis maximizes the ratio of between-classes to within-classes scatter. The idea is simple: same classes should cluster tightly together, while different classes are as far away as possible from each other. This was also recognized by Belhumeur, Hespanha and Kriegman and so they applied a Discriminant Analysis to face recognition in [3].

2.3.1 Algorithmic Description

Let X be a random vector with samples drawn from c classes:

$$X = \{X_1, X_2, \ldots, X_c\}$$ \hspace{1cm} (8)

$$X_i = \{x_1, x_2, \ldots, x_n\}$$ \hspace{1cm} (9)

The scatter matrices S_B and S_W are calculated as:

$$S_B = \sum_{i=1}^{c} N_i (\mu_i - \mu)(\mu_i - \mu)^T$$ \hspace{1cm} (10)

$$S_W = \sum_{i=1}^{c} \sum_{x_j \in X_i} (x_j - \mu_i)(x_j - \mu_i)^T$$ \hspace{1cm} (11)

where μ is the total mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$ \hspace{1cm} (12)

And μ_i is the mean of class $i \in \{1, \ldots, c\}$:
\[\mu_i = \frac{1}{|X_i|} \sum_{x_j \in X_i} x_j \]

(13)

Fisher’s classic algorithm now looks for a projection \(W \), that maximizes the class separability criterion:

\[W_{opt} = \arg \max_W \frac{|W^T S_B W|}{|W^T S_W W|} \]

(14)

Following [3], a solution for this optimization problem is given by solving the General Eigenvalue Problem:

\[
\begin{align*}
S_B v_i &= \lambda_i S_w v_i \\
S_W^{-1} S_B v_i &= \lambda_i v_i
\end{align*}
\]

(15)

There’s one problem left to solve: The rank of \(S_W \) is at most \((N - c)\), with \(N \) samples and \(c \) classes. In pattern recognition problems the number of samples \(N \) is almost always smaller than the dimension of the input data (the number of pixels), so the scatter matrix \(S_W \) becomes singular (see [2]). In [3] this was solved by performing a Principal Component Analysis on the data and projecting the samples into the \((N - c)\)-dimensional space. A Linear Discriminant Analysis was then performed on the reduced data, because \(S_W \) isn’t singular anymore.

The optimization problem can be rewritten as:

\[
\begin{align*}
W_{pca} &= \arg \max_W |W^T S_T W| \\
W_{fld} &= \arg \max_W \frac{|W^T W_{pca}^T S_B W_{pca} W|}{|W^T W_{pca} S_W W_{pca}^T W|}
\end{align*}
\]

(16) (17)

The transformation matrix \(W \), that projects a sample into the \((c - 1)\)-dimensional space is then given by:

\[W = W_{fld}^T W_{pca} \]

(18)

One final note: Although \(S_W \) and \(S_B \) are symmetric matrices, the product of two symmetric matrices is not necessarily symmetric. so you have to use an eigenvalue solver for general matrices. OpenCV’s cv::eigen only works for symmetric matrices in its current version; since eigenvalues and singular values aren’t equivalent for non-symmetric matrices you can’t use a Singular Value Decomposition (SVD) either.

2.3.2 Fisherfaces in GNU Octave/MATLAB

Translating the Linear Discriminant Analysis to GNU Octave/MATLAB is almost trivial again, see Listing 12. For projecting and reconstructing from the basis you can use the functions from Listing 5 and 6.

Listing 12: src/m/lda.m

```octave
function [W, mu] = lda(X,y,k)
% dimension of observation
[n,d] = size(X);
% number of classes
labels = unique(y);
C = length(labels);
% allocate scatter matrices
Sw = zeros(d,d);
Sb = zeros(d,d);
% total mean
mu = mean(X);
% calculate scatter matrices
for i = 1:C
    Xi = X(find(y == labels(i)),:); % samples for current class
    n = rows(Xi);
```
\[
\mu_i = \text{mean}(X_i); \quad \% \text{mean vector for current class}
\]
\[
X_i = X_i - \text{repmat}(\mu_i, n, 1);
\]
\[
S_w = S_w + X_i' X_i;
\]
\[
S_b = S_b + n \cdot (\mu_i - \mu)'(\mu_i - \mu);
\]
\[
\text{end}
\]
\[
\%	ext{solve general eigenvalue problem}
\]
\[
[W, D] = \text{eig}(S_b, S_w);
\]
\[
\%	ext{sort eigenvectors}
\]
\[
[D, i] = \text{sort}(\text{diag}(D), '\text{descend}');
\]
\[
W = W(:, i);
\]
\[
\%	ext{keep at most (c-1) eigenvectors}
\]
\[
W = W(:, 1:k);
\]
\[
\text{end}
\]

The functions to perform a PCA (Listing 4) and LDA (Listing 12) are now defined, so we can go ahead and implement the Fisherfaces from Equation 18.

```
Listing 13: src/m/fisherfaces.m
```

```
function [W, mu] = fisherfaces(X,y,k)

N = rows(X);
% number of samples
N = rows(X);
% number of classes
labels = unique(y);
c = length(labels);
if nargin < 3
k = c-1;
end
k = min(k, (c-1));
% get (N-c) principal components
[Wpca, mu] = pca(X, y, (N-c));
[Wlda, mu_Lda] = lda(project(Wpca, X, mu), y, k);
W = Wpca * Wlda;
end
```

For this example I am going to use the Yale Facedatabase A, just because the plots are nicer. Each Fisherface has the same length as an original image, thus it can be displayed as an image. We’ll again load the data, learn the Fisherfaces and make a subplot of the first 16 Fisherfaces.

```
Listing 14: src/m/example_fisherfaces.m
```

```
% load function files from subfolders aswell
addpath('genpath('.sh','));
% for plotting
db_name = 'Yale Facedatabase';
% read images
[X,y,w,h] = read_images('/home/philipp/facerenc/data/yalefaces_recognition');
% n - number of samples
% d - dimensionality
[n,d] = size(X);
% get the unique classes
c = unique(y);
% compute the fisherfaces
[W, mu] = fisherfaces(X,y);
% plot fisherfaces
figure; hold on;
title(sprintf('Fisherfaces %s', db_name));
for i=1:min(16, length(c)-1)
    subplot(4,4,i);
    fisherface_i = toGrayscale(W(:,i), w, h);
    imshow(fisherface_i);
colormap(jet(256));
title(sprintf('Fisherface #%i',i));
end
```

The Fisherfaces method learns a class-specific transformation matrix, so they do not capture illumination as obviously as the Eigenfaces method. The Discriminant Analysis instead finds the facial features to discriminate between the persons. It’s important to mention, that the performance of the Fisherfaces heavily depends on the input data as well. Practically said: if you learn the Fisherfaces for well-illuminated pictures only and you try to recognize faces in bad-illuminated scenes, then method
is likely to find the wrong components (just because those features may not be predominant on bad illuminated images). This is somewhat logical, since the method had no chance to learn the illumination.

The Fisherfaces allow a reconstruction of the projected image, just like the Eigenfaces did. But since we only identified the features to distinguish between subjects, you can’t expect a nice approximation of the original image. We can rewrite Listing 11 for the Fisherfaces method into Listing 15, but this time we’ll project the sample image onto each of the Fisherfaces instead. So you’ll have a visualization, which features each Fisherface describes.

Listing 15: src/m/example_fisherfaces.m

```matlab
steps = 1:min(16,length(c)-1);
Q = X(1,:); % first image to reconstruct
figure; hold on;
title(sprintf('Fisherfaces Reconstruction %s', db_name));
for i=1:min(16, length(steps))
    subplot(4,4,i);
    numEv = steps(i);
    P = project(W(:,numEv), X(1,:), mu);
    R = reconstruct(W(:,numEv),P,mu);
    comp = toGrayscale(R, w, h);
    imshow(comp);
    title(sprintf('Fisherface #%i', numEv));
end
```

12
3 Conclusion

This document explained and implemented the Eigenfaces [13] and the Fisherfaces [3] method with GNU Octave/MATLAB, Python. It gave you some ideas to get started and research this highly active topic. I hope you had fun reading and I hope you think cv::FaceRecognizer is a useful addition to OpenCV.

More maybe here:

- http://www.opencv.org
- http://www.bytefish.de/blog
- http://www.github.com/bytefish

References

