
CHAPTER 12
INHERITANCE AND
POLYMORPHISM
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

MOTIVATIONS

• Suppose you will define classes to model circles, rectangles, and triangles.

These classes have many common features. What is the best way to design

these classes so to avoid redundancy?

• Inheritance!

SUPERCLASSES AND SUBCLASSES

• Inheritance defines an IS-A relationship between two classes to denote a

type/sub-type relationship

• Examples: a car IS-A vehicle and a boat IS-A vehicle – they both have engines but a car

more specifically has wheels and a boat has a rudder

• A superclass defines an abstract type, whereas subclasses define more

specific types

• Superclass stores elements and provides methods that are common to all sub-types,

whereas a subclass stores additional data and provides additional methods that more

specialize the object type

• In the example: vehicle is a superclass and car/boat are subclasses

• All methods/data of the superclass are available to subclass objects

Vehicle

Car Boat

EXAMPLE
GEOMETRIC OBJECTS

GeometricObject

-color: str

-filled: bool

GeometricObject(color: str, filled:

bool)

getColor(): str

setColor(color: str): None

isFilled(): bool

setFilled(filled: bool): None

__str__(): str

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

Creates a GeometricObject with the specified color and filled

values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns a string representation of this object.

Circle

-radius: float

Circle(radius: float, color: str, filled:

bool)

getRadius(): float

setRadius(radius: double): None

getArea(): float

getPerimeter(): float

getDiameter(): float

printCircle(): None

Rectangle

-width: double

-height: double

Rectangle(width: float, height: float color:

string, filled: bool)

getWidth(): float

setWidth(width: float): None

getHeight(): float

setHeight(height: float): None

getArea(): float

getPerimeter(): float

INHERITANCE IN PYTHON

• When we say a class extends another class, this defines a type/sub-type

relationship. The syntax is as follows:

class SubclassName(SuperclassName):

• Example:

class Circle(GeometricObject):

OVERRIDING METHODS

• A subclass inherits methods from a superclass.

• However, sometimes it is necessary for the subclass to modify the implementation of a

method defined in the superclass. This is referred to as method overriding.

• Syntactically, you just define the method in the subclass. For example:

class Circle(GeometricObject):

Other methods are omitted

Override the __str__ method defined in GeometricObject

def __str__(self):

return super().__str__() + " radius: " + str(radius)

THE OBJECT CLASS

• Every class in Python is descended from the object class. If no inheritance is

specified when a class is defined, the superclass of the class is object by

default.

• There are more than a dozen methods defined in the object class. We have

seen quite a few of them already, e.g., __init__(), __str__(), and

__eq__(other)

 class ClassName:

 ...

Equivalent
class ClassName(object):

 ...

__NEW__ AND __INIT__ METHODS

• All methods defined in the object class are special methods with two leading

underscores and two trailing underscores.

• The __new__() method is automatically invoked when an object is

constructed. This method then invokes the __init__() method to initialize

the object.

• Normally you should only override the __init__() method to initialize the

data fields defined in the new class.

__STR__ AND __EQ__ METHODS

• The __str__() method returns a string representation for the object. By

default, it returns a string consisting of a class name of which the object is an

instance and the object’s memory address in hexadecimal.

• The __eq__(other) method returns True if two objects are the same. By

default, x.__eq__(y) (i.e., x == y) returns False and x.__eq__(x)

is True. You can override this method to return True if two objects have the

same contents.

POLYMORPHISM

• The inheritance relationship enables a subclass to inherit features from its superclass

with additional new features.

• A subclass is a specialization of its superclass; every instance of a subclass is also an instance

of its superclass, but not vice versa. For example, every circle is a geometric object, but not

every geometric object is a circle.

• Therefore, you can always pass an instance of a subclass to a parameter of its

superclass type.

• This is the main way polymorphism is exhibited in python in which a subclass object

"looks" like its superclass (e.g., by a parameter pass) but acts like its specialization.

• The magic of polymorphism is supported by dynamic binding in which when a

method is invoked from an instance its most overridden form (closest to the actual

type) is used instead of the most generic version

ISINSTANCE FUNCTION

• The isinstance provides a handy way to determine is an object instance is an

instance of a particular class (e.g., a subclass of a hierarchy).

• Syntax:

isinstance(object, className)

• Example:

o = Circle(5)

isinstance(o, Circle) # True

isinstance(o, Rectangle) # False

isinstance(o, GeometricObject) # True

