
CHAPTER 14
TUPLES, SETS, AND DICTIONARIES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

MOTIVATIONS

• How would we define a movie with its title and year?

• Normally, we make an extensive class, but this might be overkill.

• Here, we can use tuples

• What about a No-Fly-List to screen individuals who are banned from travel?

• We could maintain the list, but it will be inefficient to work with and operate on.

• Here, we can use sets

• What if we wanted to store student records and access them by student ID?

• Again we could maintain a list, but this will be inefficient

• Here, we can use dictionaries

TUPLES

• Tuples are like lists except they are immutable. Once they are created, their

contents cannot be changed.

• Almost every operation that can be performed on a list can be performed on a tuple

• If the contents of a list in your application do not change, you should use a

tuple to prevent data from being modified accidentally.

• Tuples are the magic behind returning more than one thing from a function

• Furthermore, tuples are more efficient than lists.

CREATING TUPLES

• There are various ways you can create a tuple, including:

• Creation of an empty tuple, or a tuple from a series of elements using () (not [])

• t1 = () # Create an empty tuple

• t2 = (1, 3, 5) # Create a tuple with three elements

• Creating a tuple from other types, e.g., lists or strings

• # Create a tuple from a list

t3 = tuple([2 * x for x in range(1, 5)])

• # Create a tuple from a string

t4 = tuple("abac") # t4 is ['a', 'b', 'a', 'c']

SETS

• Sets are like lists and store a collection of items.

• Most operations that can be performed on a list can be performed on a set, but with

some slight semantical differences

• Unlike lists, the elements in a set are unique and are not placed in any

particular order.

• If your application does not care about the order of the elements, using a set to store

elements is more efficient than using lists.

• The syntax for sets is braces {}.

CREATING SETS

• There are various ways you can create a set, including:

• Creation of an empty set, or a set from a series of elements using {} (not [])

• s1 = set() # Create an empty set

• s2 = {1, 3, 5} # Create a set with three elements

• Creating a set from other types, e.g., lists or strings

• # Create a set from a list

s3 = set([2 * x for x in range(1, 10)])

• # Create a set from a string

s4 = set("abac") # s4 is {'a', 'b', 'c'}

MATHEMATICAL SETS

OPERATIONS WITH SETS

• The method s1.issubset(s2) will determine if s1 is a subset of s2,

similarly there is a method issuperset.

• s1 = {1, 2, 4}
s2 = {1, 4, 5, 2, 6}

s1.issubset(s2) # True, as s1 is a subset of s2

• Equality test between two sets returns true if all of the same contents exist

between them

• s1 = {1, 2, 4}
s2 = {1, 4, 2}

s1 == s2 # True

SET COMPARISON OPERATORS

• It makes no sense to compare sets using the conventional comparison operators

(>, >=, <=, <), because the elements in a set are not ordered. However,

these operators have special meaning when used for sets.

• s1 > s2 - returns true means s1 is a proper superset of s2.

• s1 >= s2 - returns true means s1 is a superset of s2.

• s1 < s2 - returns true means s1 is a proper subset of s2.

• s1 <= s2 - returns true means s1 is a subset of s2.

SET UNION

• Consider:

s1 = {1, 2, 4}

s2 = {1, 3, 5}

• Union (or | operator) between two sets retains all elements between them

s1.union(s2) # {1, 2, 3, 4, 5}

s1 | s2 # {1, 2, 3, 4, 5}

SET INTERSECTION

• Consider:

s1 = {1, 2, 4}

s2 = {1, 3, 5}

• Intersection (or & operator) between two sets retains only elements in

common between the two sets

s1.intersection(s2) # {1}

s1 & s2 # {1}

SET DIFFERENCE

• Consider:

s1 = {1, 2, 4}

s2 = {1, 3, 5}

• Difference (or - operator) between two sets retains elements in the first but

not in the second

s1.difference(s2) # {2, 4}

s1 - s2 # {2, 4}

SET SYMMETRIC DIFFERENCE

• Consider:

s1 = {1, 2, 4}

s2 = {1, 3, 5}

• Symmetric Difference (or ^ operator) between two sets retains only elements

which exist either in one or the other, but not both

s1.symmetric_difference(s2) # {2, 3, 4, 5}

s1 ^ s2 # {2, 3, 4, 5}

DICTIONARY

• A dictionary is a collection of key,

value pairs. The key is like a name

of the element that allows quick

access to it.

• From our motivating example of a

student record – the key is a student ID

and the entire student data is the value

 Search keys

Corresponding element values

…

.

.

Entry

A dictionary

CREATING A DICTIONARY

• Again there are various ways to make a dictionary:

• d1 = {} # Create an empty dictionary

• d2 = {"john":40, "peter":45} # Create a dictionary

• When listing the elements, the first literal is a key and the second literal is the

value (separated by a :)

ADDING/MODIFYING ENTRIES

• To add or modify an entry to a dictionary:

• dictionary[key] = value

• For example:

• d2["susan"] = 50

DELETING ENTRIES

• To delete an entry from a dictionary:

• del dictionary[key]

• For example:

• del d2["susan"]

LOOPING OVER ENTRIES

• A for loop over a dictionary will loop over its keys. As an example:

for key in dictionary:

print(key + ":" + str(dictionary[key]))

OPERATIONS WITH DICTIONARIES

• Similar operations exist for dictionaries as did other data structures

• len(dict) counts the number of entries into the dictionary

• in/not in tests existence of keys

• Other methods:

dict

keys(): tuple

values(): tuple

items(): tuple

clear(): void

get(key): value

pop(key): value

popitem(): tuple

Returns a sequence of keys.

Returns a sequence of values.

Returns a sequence of tuples (key, value).

Deletes all entries.

Returns the value for the key.

Removes the entry for the key and returns its value.

Returns a randomly-selected key/value pair as a tuple and

removes the selected entry.

SUMMARY

• Tuples – immutable lists

• Sets – collection of unique, unordered elements

• Dictionaries – collection of key-value entries

