
CHAPTER 11
MULTIDIMENSIONAL LISTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

MOTIVATIONS

• Thus far, you have used one-dimensional lists to model linear collections of

elements. You can use a two-dimensional lists to represent a matrix or a table.

For example, the following table that describes the distances between the

cities can be represented using a two-dimensional array.

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

Distance Table (in miles)

Chicago Boston New York Atlanta Miami Dallas Houston

 0 983 787 714 1375 967 1087

 983 0 214 1102 1763 1723 1842

 787 214 0 888 1549 1548 1627

 714 1102 888 0 661 781 810

 1375 1763 1549 661 0 1426 1187

 967 1723 1548 781 1426 0 239

 1087 1842 1627 810 1187 239 0

 1723 1548 781 1426 0 239

distances = [

[0, 983, 787, 714, 1375, 967, 1087],

[983, 0, 214, 1102, 1763, 1723, 1842],

[787, 214, 0, 888, 1549, 1548, 1627],

[714, 1102, 888, 0, 661, 781, 810],

[1375, 1763, 1549, 661, 0, 1426, 1187],

[967, 1723, 1548, 781, 1426, 0, 239],

[1087, 1842, 1627, 810, 1187, 239, 0]

]

PROCESSING TWO-DIMENSIONAL LISTS

• You can view a two-dimensional list as a list that consists of rows.

• Each row is a list that contains the values.

• The rows can be accessed using the index, conveniently called a row index.

• The values in each row can be accessed through another index, conveniently called a

column index.

 1

 1

 2

 3

 4

 5

 6

 7

 0

 0

 0

 1

 0

 0

 0

 8

 0

 0

 9

 0

 3

 0

 0

 0

 0

 [0]

 [1]

 [2]

 [3]

 [4]

[0] [1] [2] [3] [4]

4 matrix = [

 [1, 2, 3, 4, 5],

 [6, 7, 0, 0, 0],

 [0, 1, 0, 0, 0],

 [1, 0, 0, 0, 8],

 [0, 0, 9, 0, 3],

]

matrix[0] is [1, 2, 3, 4, 5]

matrix[1] is [6, 7, 0, 0, 0]

matrix[2] is [0, 1, 0, 0, 0]

matrix[3] is [1, 0, 0, 0, 8]

matrix[4] is [0, 0, 9, 0, 3]

matrix[0][0] is 1

matrix[4][4] is 3

WHAT IS NEW HERE?

• Really nothing is new. We just learned lists. Now we have a list-of-lists.

• We are trying to gain comfort with working with large amounts of data!

MULTIDIMENSIONAL LIST EXAMPLES

EXAMPLE
INITIALIZING LISTS WITH INPUT VALUES

matrix = [] # Create an empty list

numberOfRows = eval(input("Enter the number of rows: "))

numberOfColumns = eval(input("Enter the number of columns: "))

for row in range(0, numberOfRows):

matrix.append([]) # Add an empty new row

for column in range(0, numberOfColumns):

value = eval(input("Enter an element and press Enter: "))

matrix[row].append(value)

print(matrix)

EXAMPLE
INITIALIZING LISTS WITH RANDOM VALUES

import random

matrix = [] # Create an empty list

numberOfRows = eval(input("Enter the number of rows: "))

numberOfColumns = eval(input("Enter the number of columns: "))

for row in range(0, numberOfRows):

matrix.append([]) # Add an empty new row

for column in range(0, numberOfColumns):

matrix[row].append(random.randrange(0, 100))

print(matrix)

EXAMPLE
PRINTING LISTS

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

for row in range(0, len(matrix)):

for column in range(0, len(matrix[row])):

print(matrix[row][column], end = " ")

print() # Print a newline

Note how you access a single value, by

applying the index operator twice.

EXAMPLE
SUMMING ALL ELEMENTS

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

total = 0

for row in range(0, len(matrix)):

for column in range(0, len(matrix[row])):

total += matrix[row][column]

print("Total is " + str(total)) # Print the total

Important! It is not len(matrix[0]). Why?

Because each row could have a different

length.

EXAMPLE
SUMMING ELEMENTS BY COLUMN

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

total = 0

for column in range(0, len(matrix[0])):

for row in range(0, len(matrix)):

total += matrix[row][column]

print("Sum for column " + str(column) + " is " + str(total))

EXAMPLE
RANDOM SHUFFLING

import random

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # Assume a list is given

for row in range(0, len(matrix)):

for column in range(0, len(matrix[row])):

i = random.randrange(0, len(matrix))

j = random.randrange(0, len(matrix[row]))

Swap matrix[row][column] with matrix[i][j]

matrix[row][column], matrix[i][j] =

matrix[i][j], matrix[row][column]

print(matrix)

EXERCISE AS A TABLE

• Try the following!

• 1 – Determine if a value exists in a matrix

• 2 – Copying a matrix

• 3 – Finding the row with the largest summation

• 4 – Finding the maximum of each row into a list of maximums

MULTIDIMENSIONAL LIST DETAILS

AGAIN, THINGS THAT ARE NOT NEW

• You can pass a multidimensional list to a function/method

• You can return a multidimensional list from a function/method

• Multidimensional lists are objects, they are passed-by-object-reference

• Be careful of copying as well!

MEMORY LAYOUT

• A list is a list of objects. So:

l = [5, 4, 3]

appears like this in memory.

0xB 0xC 0xD

l: 0xA

0xA

5

4

3

0xB

0xC

0xD

MEMORY LAYOUT

• A multi-dimensional list is a list of list of objects. So:

m = [[5, 4, 3], [2, 1, 0], [7, 8, 9]]

appears like this in memory.

0xB 0xC 0xD

m: 0xA

0xA

3

0

9

0x3

0x6

0x9

4

1

8

0x2

0x5

0x8

5

2

7

0x1

0x4

0x7

0x1 0x2 0x3

0xB

0x4 0x5 0x6

0xC

0x7 0x8 0x9

0xD

MEMORY LAYOUT

• A multi-dimensional list can also be ragged meaning it contains lists of

different lengths. So: m = [[5, 4, 3], [2, 1], [7]]

appears like this in memory.

0xB 0xC 0xD

m: 0xA

0xA

3

0x3

4

1

0x2

0x5

5

2

7

0x1

0x4

0x7

0x1 0x2 0x3

0xB

0x4 0x5

0xC

0x7

0xD

MULTIDIMENSIONAL LISTS

• Multidimensional lists can be 3, 4, 5, and higher dimensions.

scores = [

[[9.5, 20.5], [9.0, 22.5], [15, 33.5], [13, 21.5], [15, 2.5]],

[[4.5, 21.5], [9.0, 22.5], [15, 34.5], [12, 20.5], [14, 9.5]],

[[6.5, 30.5], [9.4, 10.5], [11, 33.5], [11, 23.5], [10, 2.5]],

[[6.5, 23.5], [9.4, 32.5], [13, 34.5], [11, 20.5], [16, 9.5]],

[[8.5, 26.5], [9.4, 52.5], [13, 36.5], [13, 24.5], [16, 2.5]],

[[9.5, 20.5], [9.4, 42.5], [13, 31.5], [12, 20.5], [16, 6.5]]]

scores[i] [j] [k]

Which student

Which exam

Multiple-choice or essay

SUMMARY

• Multidimensional Lists.

• Organized way to store huge quantities of data.

• Remember, they are lists-of-lists.

• Can directly access elements at their row/column.

