
CHAPTER 13
FILES AND EXCEPTION HANDLING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

MOTIVATIONS

• Data stored in the program are temporary; they are lost when the program terminates. How would

you permanently store data created from a program?

• Example:

• In bioinformatics, the result of a DNA test should be automatically stored for understanding in a crime scene

investigation.

• How can our programs work with a large amount of data?

• Example:

• How could you parse through 1,000,000 tweets related to a major world event to learn which countries it

affects the most?

• To permanently store the data created in a program, you need to save them in a file on a disk or

other permanent storage. The file can be transported and can be read later by other programs.

There are two types of files: text and binary. Text files are essentially strings on disk.

MOTIVATIONS

• When a program runs into a runtime error, the program terminates

abnormally. How can you handle the runtime error so that the program can

continue to run or terminate gracefully?

• Example

• You are working on Microsoft Word, and you try to open a file that does not exist OR is

an incorrectly formatted .doc or .docx file (like someone tampered with it). What should

happen?

• (a) Microsoft crashes

• (b) Microsoft alerts you of the issue

• (c) Forget Microsoft, Apple is superior!

INPUT AND OUTPUT

• Input devices

• Output devices.

• Goal. Programs that interact with the outside world.

• Programming languages support these interactions

• We use the Operating System (OS) to connect our program to them

Display Speakers

Keyboard Digital cameraHard

drive

Printer

Mouse Network

Hard

drive

Network MP3

Player

Microphone

WHAT HAVE WE SEEN SO FAR?

• Standard output.

• The OS output stream for text

• By default, standard output is sent to Terminal.

• Example: print() goes to standard output.

• Standard input.

• The OS input stream for text

• By default, standard input is received from the

Terminal.

• Example: input()

• “Standard Draw.”

• Graphics and GUI libraries

• Output to a window instead of a terminal

• Example: turtle

• EasyGoPiGo3

• Robot actuation and sensing

• Example: light and color sensor

FILE INPUT AND OUTPUT

OPEN A FILE

• How do you write data to a file and read the data

back from a file?

• You need to create a file object that is associated

with a physical file. This is called opening a file. The

syntax for opening a file is as follows:

file = open(filename, mode)

• Examples:

f1 = open("MyOutputFile.txt", 'w')

f2 = open("MyInputFile.txt", 'r')

Mode Description

'r' Open a file for reading only.

'w' Open a file for writing only.

'a' Open a file for appending data. Data are

written to the end of the file.

'rb' Open a file for reading binary data.

'wb' Open a file for writing binary data.

EXAMPLE

• Lets write a series of random numbers to a file:

import random

file = open("Numbers.txt", 'w')

for i in range(100):

file.write(str(random.randint(1, 10000)) + '\n')

file.close()

EXAMPLE

• Lets read those numbers back and average them:

f = open('Numbers.txt', 'r')

line = f.readline()

avg = 0

count = 0

while line != '':

count += 1

avg += int(line)

line = f.readline()

f.close()

print("Average:", avg/count)

METHODS OF FILE OBJECTS

file

read([number: int]): str

readline(): str

readlines(): list

write(s: str): None

close(): None

Returns the specified number of characters from the file. If the

argument is omitted, the entire remaining contents are read.

Returns the next line of file as a string.

Returns a list of the remaining lines in the file.

Writes the string to the file.

Closes the file.

TESTING FILE EXISTENCE

• You can easily test if a file exists or not:

import os.path

if os.path.isfile("Numbers.txt"):

print("Numbers.txt exists")

EXCEPTIONS

• What happens when open is called on a file that does not exist?

Traceback (most recent call last):

File ".\TracingTests.py", line 7, in <module>

f = open('Number.txt', 'r')

FileNotFoundError: [Errno 2] No such file or

directory: 'Number.txt'

EXCEPTION HANDLING

• To protect against exceptions, a try-except clause may be used.

• In exception handling, you have to provide an algorithm that takes care of the

exception, called the handler.

• Syntax:

try:

body

except ExceptionType:

handling code

EXAMPLE OF EXCEPTION HANDLING

try:

f = open('Numbers.txt', 'r') # Could possibly raise an exception

line = f.readline()

avg = 0

count = 0

while line != '':

count += 1

avg += int(line)

line = f.readline()

f.close()

print("Average:", avg/count)

except FileNotFoundError:

print("Numbers.txt does not exist.") # Or maybe put in loop to retry?

EXCEPTION HANDLING

• A broader syntax exists to handle various exception types. Full syntax:

try:
body that might raise exception

except ExceptionType1:
code handling exceptions of type ExceptionType1

...
except ExceptionTypeN:
code handling exceptions of type ExceptionTypeN

except:
code handling any other exception types

else:
code that runs if there is no exception

finally:
code that will run after any excepts or the else

RAISING EXCEPTIONS

• The previous code is all about invoking methods that might generate

exceptions. In these cases, a try-except clause is appropriate when you know

how to handle the code.

• Imagine, opening a file in Microsoft Word again. The code generates an exception on an

illegal file (or poorly formatted one) and allows a user to try again (it doesn't just crash!)

• But how about when we detect an error, but do not know how to handle it?

• In these cases, we should raise an exception so that the invoker of

the method can then decide to handle it.

RAISING EXCEPTIONS

• To raise an exception use the following syntax:

raise ExceptionClass("Descriptive message")

• Example:

class Circle:

def __init__(self, r):

if r < 0: # Note, we do not know how to

handle the bad input here

raise ValueError("Bad radius")

self.__radius = r

…

NOTE

• Raising exceptions "returns" an object. We can access the object in calling code with the following

syntax:

try:

body

except ExceptionType as exceptionName:

handling code

• Example:

try:

f = open('Numbers.txt', 'r')

except FileNotFoundError as fnfe:

print(fnfe)

BUILT-IN PYTHON EXCEPTIONS

BaseException

Exception

StandardError

ArithmeticError

ZeroDivionError

EnvironmentError

IOError

OSError

RuntimeError

LookupError

SyntaxError

IndentationError

IndexError

KeyError

DEFINING YOUR OWN EXCEPTION CLASS

• You can define your own exception classes, but it requires the use of inheritance. See the book

for a detailed example.

• A loose example:

class RadiusException(RuntimeError):

def __init__(self, radius):

super().__init__()

self.radius = radius

• At the error site:

if radius < 0:

raise RadiusException(radius)

• At the exception cite:

except RadiusException as ex:

print("The radius", ex.radius, "is invalid.")

CAUTIONS WHEN USING EXCEPTIONS

• Exception handling separates error-handling code from normal programming

tasks, thus making programs easier to read and to modify. Be aware,

however, that exception handling usually requires more time and resources

because it requires instantiating a new exception object, rolling back the call

stack, and propagating the errors to the calling methods.

WHEN TO THROW EXCEPTIONS

• When a variable reaches an unexpected value or algorithm reaches an

unexpected state.

• If you want the exception to be processed by its caller, you should create an

exception object and raise it.

• However, if you can handle the exception in the method where it occurs, there

is no need to throw it, e.g., with if-else statements.

EXERCISE – WORK IN PAIRS/TRIPLETS

EXERCISE

1. Write a program that will generate 𝑁 random cirlces, where 𝑁 ∈ [3, 20],

the center 𝑥, 𝑦 points between −500, 500 , and the radius is between

10,90 . Write the circles to a file – first line is 𝑁, each line after is the

circle defined by 𝑥, 𝑦, and 𝑟

2. Write a program that reads your file and shows it to the user using Turlte.

Try to use a random color to show the outline and a different random color

to fill the circle.

REMOTE FILES

• When working with the GoPiGo3, any file we write in a python program will

be saved on the GoPiGo3 itself.

• We may want to do this for "data-dumps" – a time stamped file with all of

the sensor readings, AI decisions, and actuator commands.

• How can we access the files?

• Remote copy: scp pi@gopigoXX:~/remoteFile .

• Example: scp pi@gopigo00:~/MyFile.txt .

EXAMPLE

from easygopigo3 import EasyGoPiGo3

robot = EasyGoPiGo3()

distance_sensor = robot.init_distance_sensor()

servo = robot.init_servo()

servo.reset_servo()

f = open("Distances.txt", 'w')

for i in range(36):

f.write(str(distance_sensor.read_mm())+'\n')

robot.turn_degrees(10)

COMPETITION

• Form teams and solve the following problem. We will decide who wins

tomorrow.

• Make a robot follow a line. Whichever team gets the furthest along the line

wins.

• You can only use the raw data from the line sensor, i.e., the 6 data values.

• You can assume that you start on the line.

• You can assume that you will encounter curves and sharp turns up to 90 degrees.

• The line might be of varying thickness.

