
CHAPTER 8
MORE ON STRINGS AND SPECIAL
METHODS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

MOTIVATIONS

• Text is everywhere! Computers have to interface with humans.

• How could we determine of a tweet has sensitive or false information?

• When filling out a form how do we know a date is a valid format?

• DD/MM/YYYY

• MM/DD/YY

• etc

THE STRING CLASS - STR

• Strings are objects that can be constructed and used (invoking methods)

• Creating Strings

• s1 = str() # Create an empty string ("")

• s2 = str("Welcome") # Create a string "Welcome"

• Python provides a simple syntax for creating string using a string literal. For

example:

• s1 = "" # Same as s1 = str()

• s2 = "Welcome" # Same as s2 = str("Welcome")

STRINGS ARE IMMUTABLE

• A string object is immutable. Once it is created, its contents cannot be

changed. To optimize performance, Python uses one object for strings with the

same contents. Below, both s1 and s2 refer to the same string object.

s1 = "Welcome"

s2 = "Welcome"

print(id(s1))

print(id(s2))

Memory

s1:

s2:

Output

505408902

505408902

Str

s: "Welcome"

SOME FUNCTIONS WITH STR

• Let a variable s = "Welcome"

• len(s) – returns the length of the string, in this example 7.

• max(s) – returns the character with the largest Ascii value, 'o' in this case

• min(s) – returns the character with the smallest Ascii value, 'W' in this case

INDEX OPERATOR []

• Strings are laid out as a sequential piece of memory. We refer to the first

element as the index 0

• The index in computing is the distance (number of characters in this example) from the

start, not which element in order.

• You can access an individual character with the index operator []:

s = "Welcome"

print(s[4])

Outputs 'r'

 P r o g r a m m i n

i

g

i

0 1 2 3 4 5 6 7 8 9

i

10

i
s

s[0] s[1] s[10]

THE +, *, [:], AND IN OPERATORS

• Consider:

s1 = "Welcome"

s2 = "Python"

s3 = s1 + " to " + s2 # s3 contains "Welcome to Python"

s4 = 2*s1 # s4 constains "WelcomeWelcome"

s5 = s1[3:6] # s5 contains "com"

containsW = 'W' in s1 # containsW stores True

containsXYZ = "XYZ" not in s2 # containsX stores True

THE +, *, [:], AND IN OPERATORS

• + – is an operator that concatenates (joins) two strings and returns the result

• * – is an operator that repeats a string some amount of times and returns the result

(called the repetition operator)

• [:] – is an operator that returns a substring of the string, called the slicing

operator. The slice returned begins at the first index and ends at the second index -

1.

• in and not in – are containment operators returning Boolean values whether a

character/string is contained/not contained within a string or not.

NEGATIVE INDEX IN A SLICING OPERATOR

• Consider:

s1 = "Welcome"

s2 = s1[-1] # s2 contains "e"

s3 = [-3:-1] # s3 contains "om"

• A negative index counts from the end of the string

FOREACH LOOPS OVER STRINGS

• Looping over the contents of a string is important for various settings.

• Consider the following with someString = "Hello":

• for ch in someString: # Recall for is for each element

of a sequence!

print(ch, end=",") # Outputs: H,e,l,l,o

• for i in range(0, len(someString), 2):

print(s[i], end=" ") # Outputs: H l o

COMPARING STRINGS

• Relational operators work on strings as well. Consider:

s1 = "green"

s2 = "glow"

s1 == s2 # False

s1 != s2 # True

s1 > s2 # True

s1 >= s2 # True

s1 < s2 # False

s1 <= s2 # False

TESTING CHARACTERS IN A STRING

• The following methods can be used on string objects to test character,

example:

s = "123"

s.isdigit()

True

str

isalnum(): bool

isalpha(): bool

isdigit(): bool

isidentifier(): bool

islower(): bool

isupper(): bool

isspace(): bool

Return True if all characters in this string are alphanumeric

and there is at least one character.

Return True if all characters in this string are alphabetic and

there is at least one character.

Return True if this string contains only number characters.

Return True if this string is a Python identifier.

Return True if all characters in this string are lowercase letters
and there is at least one character.

Return True if all characters in this string are uppercase letters

and there is at least one character.

Return True if this string contains only whitespace characters.

SEARCHING FOR SUBSTRINGS

• The following methods can be used in order to search for substrings. Example:

s.endswith("me")

str

endswith(s1: str): bool

startswith(s1: str): bool

find(s1): int

rfind(s1): int

count(subtring): int

Returns True if the string ends with the substring s1.

Returns True if the string starts with the substring s1.

Returns the lowest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the highest index where s1 starts in this string, or -1 if

s1 is not found in this string.

Returns the number of non-overlapping occurrences of this

substring.

CONVERTING STRINGS

• You can perform transformations on strings for convenience.

str

capitalize(): str

lower(): str

upper(): str

title(): str

swapcase(): str

replace(old, new): str

Returns a copy of this string with only the first character capitalized.

Returns a copy of this string with all characters converted to lowercase.

Returns a copy of this string with all characters converted to uppercase.

Returns a copy of this string with the first letter capitalized in each word.

Returns a copy of this string in which lowercase letters are converted to

uppercase and uppercase to lowercase.

Returns a new string that replaces all the occurrence of the old string with a

new string.

STRIPPING WHITESPACE CHARACTERS

• Additionally, stripping whitespace

str

lstrip(): str

rstrip(): str

strip(): str

Returns a string with the leading whitespace characters removed.

Returns a string with the trailing whitespace characters removed.

Returns a string with the starting and trailing whitespace characters

removed.

FORMATTING STRINGS

• Additionally, methods to format.

str

center(width): str

ljust(width): str

rjust(width): str

format(items): str

Returns a copy of this string centered in a field of the given width.

Returns a string left justified in a field of the given width.

Returns a string right justified in a field of the given width.

Formats a string. See Section 3.6.

EXERCISE

• Write a method that determines whether a string is a palindrome (a string

that is the same read forward and backward, e.g., racecar).

• Write a test method that allows a user to enter a string and print whether it is

a palindrome or not.

EXERCISE

• Write a function that converts a string of hexadecimal (base 16, e.g., "1F") to

a decimal number (31 for the example).

• Write a test for your functions.

OPERATOR OVERLOADING

• There is some magic to how strings support things like concatenation. It turns

out we can also write these special methods for operators. This is called

operator overloading.

• Operator overloading allows the programmer to use the built-in operators for

user-defined methods.

• These methods are named in a special way for Python to recognize the association.

OPERATOR OVERLOADING

• The following are special methods in python. Example:

class Addable:

def __init__(self, x = 0):

self.__x = x

def __add__(self, other):

return Addable(self.__x + other.__x)

def __str__(self):

return str(self.__x)

a1 = Addable(3)

a2 = Addable(2)

a3 = a1 + a2

print(a3) # Outputs 5 because of __str__

 Operator Method

+

*

-

/

%

<

<=

==

!=

>

>=

[index]

in

len

str

__add__(self, other)

__mul__(self, other)

__sub__(self, other)

__div__(self, other)

__mod__(self, other)

__lt__(self, other)

__le__(self, other)

__eq__(self, other)

__ne__(self, other)

__gt__(self, other)

__ge__(self, other)

__getitem__(self, index)

__contains__(self, value)

__len__(self)

__str__(self)

REMINDER

• Read the book! Lots of great examples and extra explanations.

• Read/answer end of section exercises/checkpoints

