
CHAPTER 7
OBJECTS AND CLASSES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

MOTIVATIONS

• Suppose you want to develop a graphical user interface as shown below. How

do you program it?

• Facebook?

• Pixar animations?

WHAT ISN'T "NEW"?

• Some things we have seen and are familiar with, but do not fully understand

the details:

• robot = EasyGoPiGo3() # Robot isn't a regular data type

• robot.forward() # Using methods tied the a variable's value

REVIEW OF DATA TYPES

• Data type. Set of values and operations on those values.

• Primitive types. Values directly map to machine representation; operations

directly map to machine instructions.

• We want to write programs that process other types of data.

• Colors, pictures, strings, vectors, polygons, input streams, …

Data Type Set of Values Operations

Booleans True, False not, and, or, xor

Integers [−231, 231) add, subtract, multiply

Floating-point numbers any of 2^64 real numbers add, subtract, multiply

OBJECT-ORIENTED PROGRAMMING CONCEPTS

• Object-oriented programming (OOP) involves programming using objects

• An object represents an entity in the real world that can be distinctly identified. For

example, a student, a desk, a circle, a button, and even a loan can all be viewed as

objects. An object has a unique identity, state, and behaviors.

• The state of an object consists of a set of data fields (also known as properties) with their

current values.

• The behavior of an object is defined by a set of methods.

Data Type Set of Values Operations

Color 24 bits getRed(), brighten()

Picture 2D array of Colors getPixel(i, j), setPixel(i, j)

String Sequence of characters length(), substring(), compare()

OBJECTS

• An object has both a state and behavior. The state defines the object, and the

behavior defines what the object does.

• An object class defines its possible states and its behaviors

• An object instance is a variable of the object type, i.e., it is a specific “value” or state

Class Name: Circle

Data Fields:
radius

Methods:
getArea()

Circle Instance 1

Data Fields:
radius: 10

Circle Instance 2

Data Fields:
radius: 25

Circle Instance 3

Data Fields:
radius: 125

A class template defines

the object

Three instances

of the Circle

class

CLASSES

• Classes are constructs that define objects of the same type

• A Python class uses variables to store data fields and defines methods to

perform actions. Additionally, a class provides a special type method, known

as initializer, which is invoked to create a new object. An initializer can

perform any action, but an initializer is designed to perform initializing

actions, such as creating the data fields of objects.

EXAMPLE CLASS

import math

class Circle:

def __init__(self, radius = 1): # Construct a circle

self.__radius = radius # Define data fields

def getPerimeter(self): # Methods operate on data

return 2*self.__radius*math.pi

def getArea(self):

return self.__radius * self.__radius * math.pi

def setRadius(self, radius):

self.__radius = radius
Note, __ is two

underscores.

What else do you

notice?

CONSTRUCTING OBJECTS

• Once a class is defined, you can create objects from the class by using the following

syntax, called a constructor:

className(arguments)

• Example:

Cirlce(50)

• What happens?

• A new object is created in memory for this instance

• The special method __init__() is invoked on this new object. The self

parameter is automatically set to the newly created object.

• A reference to the object is returned, so that you can save it in a variable.

Object in memory

Data Fields:

__init__(self, …)

Object

reference

INSTANCE METHODS

• Methods are functions defined inside a class. They are invoked by objects to

perform actions on the objects. For this reason, the methods are also called instance

methods in Python. You probably noticed that all the methods including the constructor

have the first parameter self, which refers to the object that invokes the method.

You can use any name for this parameter. But by convention, self is used.

• Example:

c1 = Circle(50)

c2 = Circle(30)

a1 = c1.getArea() # Here c1 is the self argument

a2 = c2.getArea() # Here c2 is the self argument

ACCESSING OBJECTS

• After an object is created, you can access its data fields and invoke its

methods using the dot operator (.), also known as the object member access

operator.

• Example:

c = Circle(50)

a = c.getArea()

p = c.getPerimeter()

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

myCircle:

None

Declare myCircle

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

myCircle:

None

0xA

Create a circle

Circle

__radius 5

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

myCircle:

0xA (reference)

0xA

Assign memory

location to

reference variable

Circle

__radius 5

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

myCircle: yourCircle:

0xA (reference) None

0xA

Declare yourCircle

Circle

__radius 5

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

myCircle: yourCircle:

0xA (reference) None

0xA 0xB

Create a circle

Circle

__radius 5

Circle

__radius 1

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

myCircle: yourCircle:

0xA (reference) 0xB

0xA 0xB

Assign memory

location to

reference variable

Circle

__radius 5

Circle

__radius 1

TRACING

1. myCircle = Circle(5.0)

2. yourCircle = Circle()

3. yourCircle.setRadius(100)

Memory

myCircle yourCircle

0xA (reference) 0xB

0xA 0xB

Change radius in

your circle

Circle

__radius 5

Circle

__radius 100

WHY SELF?

• Note that the first parameter is special. It is used in the implementation of the

method, but not used when the method is called.

• So, what is this parameter self for? Why does Python need it?

• self is a parameter that represents an object

• Using self, you can access instance variables in an object, which storing data fields

• Each object is an instance of a class and instance variables are tied to specific objects.

Thus, each object has its own unique instance variables.

• You can use the syntax self.x to access the instance variable x for the object self

inside of a method definition.

ACTIVITY

• Together lets make a program to have a "ball" bouncing in a box

• First lets design

• A ball needs an x, y position and an x, y velocity and a radius

• A ball can move by updating the position by adding the velocity

• Now lets code and test with Turtle graphics

ACTIVITY

• Lets also abstract the concept of a "vector" (similar to a point) to make the

math cleaner.

• Finally, lets make it more interesting with gravity

OBJECT-ORIENTED PROGRAMMING

• Object-oriented Programming – design principle for large programs

• Abstraction – Modeling objects

• Composition – Modeling object associations (HAS-A relationship)

• Encapsulation – combining data and operations (methods); data hiding from misuse

(private vs public)

• Inheritance – Types and sub-types (IS-A relationship)

• Polymorphism – Abstract types that can act as other types (for algorithm design)

PROCEDURAL VS. OBJECT-ORIENTED

• In procedural programming, data and operations on the data are separate, and this

methodology requires sending data to methods.

• Object-oriented programming places data and the operations that pertain to them in an

object.

• This approach solves many of the problems inherent in procedural programming.

• The object-oriented programming approach organizes programs in a way that mirrors the

real world, in which all objects are associated with both attributes and activities.

• Using objects improves software reusability and makes programs easier to develop and

easier to maintain.

• Programming in Python involves thinking in terms of objects; a Python program can be viewed

as a collection of cooperating objects.

ABSTRACTION AND ENCAPSULATION

• Abstraction means to separate class implementation from the use of the class.

• A description of the class lets the user know how the class can be used (class contract)

• Thus, the user of the class does not need to know how the class is implemented

• The detail of implementation is encapsulated and hidden from the user.

Class Contract

(Signatures of

public methods and

public constants)

Class

Class implementation

is like a black box

hidden from the clients

Clients use the

class through the

contract of the class

UML CLASS DIAGRAM

• An aside: in design, we often document a class in a special diagram called

UML, or Universal Markup Language.

• In this, we describe classes, their data, methods, and the relationships to other

objects.

UML CLASS DIAGRAM FOR ABSTRACTION

Circle

radius: double

Circle()

Circle(newRadius: float)

getArea(): float

Class name

Data fields

Constructors and methods

circle1: Circle

radius: 10

circle2: Circle

radius: 25

circle3: Circle

radius: 125

UML notation for

instances (objects)

EXAMPLE UML DIAGRAM
DEFINING A TV OBJECT

 TV

channel: int

volumeLevel: int

on: bool

TV()

turnOn(): None

turnOff(): None

getChannel(): int

setChannel(channel: int): None

getVolume(): int

setVolume(volumeLevel: int): None

channelUp(): None

channelDown(): None

volumeUp(): None

volumeDown(): None

The current channel (1 to 120) of this TV.

The current volume level (1 to 7) of this TV.

Indicates whether this TV is on/off.

Constructs a default TV object.

Turns on this TV.

Turns off this TV.

Returns the channel for this TV.

Sets a new channel for this TV.

Gets the volume level for this TV.

Sets a new volume level for this TV.

Increases the channel number by 1.

Decreases the channel number by 1.

Increases the volume level by 1.

Decreases the volume level by 1.

DATA FIELD ENCAPSULATION

• Important to protect data from misuse, i.e., prevent direct modifications of

data fields, don’t let the client directly access data fields.

• Important to make class easy to maintain

• Data field encapsulation is accomplished by defining private data fields. In

Python, the private data fields are defined with two leading underscores. You

can also define a private method named with two leading underscores

DATA FIELD ENCAPSULATION

• Sometimes, accessing this variable will give an AttributeError:

c = Circle(5)

print(c.__radius) # AttributeError

Note if radius was public

(no __ inside the class)

this would work

• Again, most of the time, data should be kept private to prevent misuse

UML CLASS DIAGRAM FOR ENCAPSULATION

Loan

-annualInterestRate: float

-numberOfYears: int

-loanAmount: float

-borrower: str

Loan(annualInterestRate: float,

numberOfYear: int, loanAmount:

float, borrower: str)

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The borrower of this loan.

Constructs a Loan object with the specified annual

interest rate, number of years, loan amount, and

borrower.

The get methods for these data fields are

provided in the class, but omitted in the

UML diagram for brevity.

The – sign denotes a private data field.

OBJECT COMPOSITION

• Composition/Aggregation models has-a relationships and represents an

ownership relationship between two objects

• The owner object is called an aggregating object and its class an aggregating class. The

subject object is called an aggregated object and its class an aggregated class.

• Typically represented as a data field in the aggregating object

AGGREGATION OR COMPOSITION

• Many texts don’t differentiate

between the two, calling them both

compositions – the idea of an object

owning another object

• However, the technical difference is:

• Composition – a relationship where

the owned object cannot exist

independent of the owner

• Aggregation – a relationship where

the owned object can exist independent

of the owner

AGGREGATION BETWEEN SAME CLASS

• Aggregation may exist between objects of the same class. For example, a

person may have a supervisor.

Person

Supervisor

1

1

Person

Supervisor

1

m

Aggregation of a single

Person owning a person

Aggregation of a single

Person owning multiple

persons

PRACTICE

• Describe objects (data and functions) for an Aquarium

• Be descriptive

• Objects can contain other objects!

• Objects interact with other objects!

EXERCISE

• Describe objects (data and functions) for the world of Harry Potter

• Be descriptive

• Objects can contain other objects!

• Objects interact with other objects!

ACCESSORS/MODIFIERS

• Methods which read/use the data

without modifying it are commonly

referred to as accessors

• Methods that alter the data of an

object are referred to as modifiers

• A common accessor/modifier pair is a

getter/setter for a specific data

member

• The getter method simply returns the

data value

• The setter method simple sets a new

value to the data

• What types are the following methods

in the circle class?

• getRadius()

• setRadius()

• getArea()

• getPerimeter()

IMMUTABILITY

• If the contents of an object cannot be changed once the object is created, the

object is immutable.

• If you delete the set method in the Circle class, the class would be immutable because

radius is private and cannot be changed without a set method.

• A class with all private data fields and without modifiers is not necessarily

immutable. How?

• The objects for integers/float/string are immutable in python. This is why they

act like primitive types.

SCOPE

• Variables private to a class should only be accessed within that class.

• Recall – scope is the lifetime of a variable. It dictates where you as the

programmer may refer to the identifier (name) in code

• Rule – The scope of class member variables is the entire class (including inside of any

method). They can be declared anywhere inside a class.

• Rule – The scope of a local variable starts from its declaration and continues to the end

of the block that contains the variable.

REFERENCES PASSED TO FUNCTIONS/COPY

c1

Object type assignment c1 = c2

Before:

 c2

c1

After:

c2

c1: Circle

radius = 5

C2: Circle

radius = 9

c1: Circle

radius = 5

C2: Circle

radius = 9

• When passing objects into functions,

they are passed-by-object-

reference. This means that the object

that is passed to the function is

modified directly.

• During assignment of variables, the

reference is being copied!

STATIC AND CLASS VARIABLES

• You can also have variables shared among all instances, these are called class

or static variables

• Declare them at the top of the class:

class Circle:

numInstances = 0

def __init__(self, radius=1):

self.__radius = radius

Circle.numInstances += 1

STATIC AND CLASS FUNCTIONS

• Class functions can operate on the class or static

variables

• First parameter will be cls (for class) and

variables can be accessed from it. Demarcated with

@classmethod

• Example (inside of a class):

@classmethod

def getNumInstances(cls):

return cls.numInstances

• Static functions can only read class or static

variables

• Takes no special parameters. Demarcated with

@staticmethod

• Serves as just a utility function

• Example (inside of a class):

@staticmethod

def pi(places):

return round(math.pi, places)

INSTANCE VS STATIC

• Instance – a, or relating to a, specific object’s value

• Instance variables belong to a specific instance.

• Instance methods are invoked by an instance of the class.

• Static – not a, or relating to a, specific object’s value (related to the type).

• Static variables are shared by all the instances of the class.

• Static methods are not tied to a specific object.

EXERCISE

• Make and test a class rectangle, defined by a width and height

• Have methods to compute its area and perimeter

• Bonus:

• Support drawing with turtle graphics

EXERCISE

• Implement odometry for a GoPiGo3 robot. Using only time,

spin_left/spin_right, forward, and stop track the relative position compared

with the starting position.

• The robot will start at 𝑥, 𝑦, 𝜃 = (0, 0, 0)

• When the robot goes forward alter 𝑥 and 𝑦 accordingly

• When the robot spins alter 𝜃

• Tip: be careful of the speed of the robot

• Tip: use trigonometry to determine the change in 𝑥 and 𝑦

𝑟 sin 𝜃

𝑟 co𝑠 𝜃

𝑟

