
CHAPTER 6
FUNCTIONS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO JAVA PROGRAMMING, LIANG (PEARSON 2014)

OPENING PROBLEM

• Find the sum of integers from 1 to 10, from 20 to 30, and from 35 to 45,

respectively.

• Compute the square root of a number over and over again

• Organize a large program into smaller components

PROBLEM

1. sum = 0

2. for i in range(1, 11):

3. sum += i

4. print("Sum from 1 to 10 is", sum)

1. sum = 0

2. for i in range(20, 30):

3. sum += i

4. print("Sum from 20 to 30 is", sum)

1. sum = 0

2. for i in range(35, 46):

3. sum += i

4. print("Sum from 35 to 45 is", sum)

SOLUTION

1. def sum(i1, i2):

2. res = 0

3. for i in range(i1, i2+1):

4. res += i

5. return res

6.
7. def main():

8. print("Sum from 1 to 10 is ", sum(1, 10));

9. print("Sum from 20 to 30 is ", sum(20, 30));

10. print("Sum from 35 to 45 is ", sum(35, 45));

11. # Invoke the main Function

12. if __name__ == '__main__':

13. main()

Function

Definition

Function

Invocation

Main is also a function. While we are by no means

required to provide a Function called main, it is

convention. Other languages require such constructs.

FUNCTION DEFINITIONS

DEFINING FUNCTIONS

• A function is a collection of

statements that are grouped

together to perform an operation.

• "function"

• "subroutine"

• "algorithm"

𝑓
𝑥

𝑦

𝑧

𝑓 𝑥, 𝑦, 𝑧

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

FUNCTION HEADER

• A function contains a header and body. The header begins with the def

keyword, followed by function’s name and parameters, followed by a colon.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

FORMAL PARAMETERS

• The variables defined in the function header are known as

formal parameters.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

ACTUAL PARAMETERS

• When a function is invoked, you pass a value to the parameter. This value is

referred to as actual parameter or argument.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

RETURN VALUE

• A function optionally may return a value using the return keyword.

def max(num1, num2):

 if num1 > num2:

 result = num1

 else:

 result = num2

 return result

function name formal parameters

return value

function

body

function

header

Define a function Invoke a function

 z = max(x, y)

 actual parameters

(arguments)

EXAMPLE

• Lets write a function to compute a random integer between 𝑎, 𝑏

• Lets write a function to computes the square of a number

• Lets write a function to print a point in a special format

• What do you observe about Functions?

EXERCISE

• On the white boards

• Write a function to determine if two circles overlap

• Write a function that converts a number to binary in string form, e.g., if 13 was provided

as input, then "1101" would be returned as output.

DEVELOP A ROBOT PROGRAM

• Spins in one complete circle at intervals of 10 degrees and scans for a bright light

• Once a "bright" light is found, the robot moves forward 0.1 meters

• The robot should continue to operate until 5 successful scans are complete

• Turn the light on when the robot is moving forward (off otherwise)

• In this program write and use as many functions as possible to organize your solution.

Starting with a main program. (*hint* -- my solution had about 4 functions)

FUNCTION TRACING

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Before main's memory space

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Main's memory space

Before main's memory space

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Main's memory space

i: 5

j: 2

Before main's memory space

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Max's memory space

num1: 5

num2: 2

Main's memory space

i: 5

j: 2

Before main's memory space

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Max's memory space

num1: 5 result: 5

num2: 2

Main's memory space

i: 5

j: 2

Before main's memory space

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Max's memory space

num1: 5 result: 5

num2: 2

Main's memory space

i: 5

j: 2

k: 5

Before main's memory space

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Main's memory space

i: 5

j: 2

k: 5

Before main's memory space

Output

The maximum of 5 and

2 is 5

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Main's memory space

i: 5

j: 2

k: 5

Before main's memory space

Output

The maximum of 5 and

2 is 5

TRACING FUNCTION CALLS

def main():

i = 5

j = 2

k = max(i, j)

print("The maximum

of", i, "and", j,

"is", k)

def max(num1, num2):

if num1 > num2:

result = num1

else:

result = num2

return result

if __name__ == '__main__':

main()

Memory

Before main's memory space

Output

The maximum of 5 and

2 is 5

FUNCTION CONTROL FLOW

• Key point. Functions provide a new

way to control the flow of execution.

• What happens when a function is

called:

Actual parameters
are evaluated

Formal
parameters

assigned given
values

Control is
transferred to

Function

Function is
executed

Return value is
sent to invocation

site

Control is
transferred back

to caller

CALL STACKS

• The memory operates in the manner of a stack,

called the call stack

• Each function invocation has its own memory space on the

top of the stack that is allocated when the function is

called

• After running the function and returning, this memory is

released and variables of the function are no longer

accessible

• Important – each time the function is invoked, a new

space in memory is acquired and the variables are

given new values

FUNCTION DETAILS

RETURN VALUES

• Functions do not need return values/statements

• Example:

def doSomething():

print("Hi there")

• In this case, functions automatically return a special value in Python – None.

• It is a keyword, similar to True and False.

• Other languages refer to this as "void" and it is not actually a value

Try it with this program. Invoke

print(doSomething()).

PASSING ARGUMENTS BY POSITIONS

• Consider:

def nPrintln(message, n):

for i in range(n):

print(message)

• What happens with the following invocations?

• nPrintln("Hi", 5)

• nPrintln("Class", 2)

• nPrintln(4, "What now?") Type error!

PASSING ARGUMENTS BY KEYWORDS

• Consider:

def nPrintln(message, n):

for i in range(n):

print(message)

• What about the following?

• nPrintln(n=4, message="What now?")

• This is completely ok and normal in Python

PASSING VARIABLES

• In python, all data are objects and

variables are actually a reference to

an object

• When you invoke a function, a

variables reference is passed into the

function, i.e., Python is pass-by-object-

reference.

• For now and for simplicity, assume

Python is pass-by-value, essentially,

meaning that changes to a variable

inside the function do not affect the

variable passed to it, i.e., it is copied

• Numbers and strings in python work this

way, but we will amend this rule when we

learn more about objects

varName

otherVarName = varName

Object memory

Refers to

REUSE FUNCTIONS FROM OTHER FILES

• One of the benefits of functions is for reuse.

• Simply import, and use the Function

• Example

from math import sqrt

sqrt()

From states the file from which a

function or class is taken. Import brings

the name into the program,

SCOPE

• Scope is the part of the program where a variable can be referenced

• A variable created inside a function is referred to as a local variable.

• Local variables can only be accessed inside a function.

• The scope of a local variable starts from its creation and continues to the end of the

function that contains the variable.

• In Python, you can also use global variables.

• They are created outside all functions and are accessible to all functions in their scope.

• You have been using these exclusively until now

SCOPE EXAMPLE 1

globalVar = 1

def f1():

localVar = 2

print(globalVar)

print(localVar)

f1()

print(globalVar)

Out of scope. This gives an error

print(localVar)

What is output?

SCOPE EXAMPLE 2

x = 1

def f1():

x = 2

Displays 2

print(x)

f1()

Displays 1

print(x)

What is output?

SCOPE EXAMPLE 3

x = eval(input("Enter a number: "))

if x > 0:

y = 4

Gives an error only if y is not created

print(y)

What is output?

SCOPE EXAMPLE 4

sum = 0

for i in range(5):

sum += i

Displays 5

print(i)

What is output?

SCOPE EXAMPLE 5

x = 1

def increase():

global x

x += 1

Display 2

print(x)

increase()

Display 2

print(x)

What is output?

DEFAULT ARGUMENTS

• You are allowed to define default arguments for parameters

• When the function is invoked without the parameter, the default value is used

• Example

def incr(n, i=1):

return n + i

x = 1

x = incr(x, 4)

x = incr(x) # Invoked like incr(x, 1)

MULTIPLE RETURN VALUES

• Python also allows returning multiple values at a time. Example:

def sqrAndCube(x):

sqr = x*x

cube = sqr*x

return sqr, cube

sqr, cube = sqrAndCube(5)

print(sqr, cube)

MODULARIZATION

FUNCTION ABSTRACTION

• You can think of the function body as a black box that contains the detailed

implementation for the function.

Function Header

Function body
Black Box

Optional arguments

for Input
Optional return

value

MODULARIZING CODE

• Functions can be used to reduce redundant coding and enable code reuse.

Functions can also be used to modularize code and improve the quality of the

program.

• Benefits of functions

• Write a function once and reuse it anywhere.

• Information hiding. Hide the implementation from the user.

• Reduce complexity.

SOFTWARE DEVELOPMENT

• Things to rembember

• You rarely write code for yourself

• Rather, you belong to a team working towards a common goal, where no one person can

know everything of the code.

• How can we communicate intent of code and its design?

• Documentation

• How do we develop large programs?

• Stepwise refinement

DOCUMENTATION

• We use comments to relay intent of control flow and difficult to understand

statements

• It is a fine balance between too much and too little commenting

• For larger control structures, i.e., functions, methods, and classes, we should

provide official documentation to specify its use

• We will use docstring format

• Every class, method, and function will need a docstring describing its purpose, formal

arguments, and return value.

DOCUMENTATION

• Docstring example:

def square(n):

"""

Square a number.

Arguments:

n: A number.

Returns:

The square of the input number.

"""

return n*n

""" Denotes the start and end of a

docstring. If you use the help() function in

python, it prints the docstring. Try it with

help(square).

Always provide a brief explanatory

statement.

If arguments are needed, document each one

with a description. Otherwise do not have an

"Arguments" section.

If the function returns a value, document its

meaning in the "Returns" section.

STEPWISE REFINEMENT

• The concept of function abstraction can be applied to the process of

developing programs. When writing a large program, you can use the "divide

and conquer" strategy, also known as stepwise refinement, to decompose it

into subproblems. The subproblems can be further decomposed into smaller,

more manageable problems.

PRINTCALENDER CASE STUDY

• Let us use the PrintCalendar

example to demonstrate the

stepwise refinement approach.

DESIGN DIAGRAM

printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

IMPLEMENTATION: TOP-DOWN

• Top-down approach is to implement one function in the structure chart at a

time from the top to the bottom. Stubs can be used for the functions waiting to

be implemented. A stub is a simple but incomplete version of a function. The

use of stubs enables you to test invoking the function from a caller. Implement

the main function first and then use a stub for the printMonth Function. For

example, let printMonth display the year and the month in the stub. Thus, your

program may begin like this:

IMPLEMENTATION: BOTTOM-UP

• Bottom-up approach is to implement one function in the structure chart at a

time from the bottom to the top. For each function implemented, write a test

program to test it. Both top-down and bottom-up functions are fine. Both

approaches implement the functions incrementally and help to isolate

programming errors and makes debugging easy. Sometimes, they can be used

together.

BENEFITS OF STEPWISE REFINEMENT

• Simpler programs

• Reusing functions

• Easier developing, debugging, and testing

• Better for facilitating teamwork

UNIT TESTING

• Unit test – Automated piece of code that invokes a

“unit” of work and then checks a single assumption

of its behavior. Use main() to test each library.

• Follow SETT – unit testing paradigm

• Setup – create data for input and predetermine the

output

• Execute – call the function in question

• Test – analyze correctness and determine true/false for

test

• Teardown – cleanup any data, close buffers, etc

• Take a function to compute the square of a number.

Here is a good unit test for that function:

def testSquare() {

Setup – predetermined values!

x = 5

ans = 25

Execute – call the function

sqr = square(x)

Test

return sqr == ans

Empty teardown

CLARIFICATION TIME!

• Write any and all questions you

have on an index card. It can range

from asking about my experiences,

specific things in Python, etc.

EXERCISE

• Financial Application: Loan Amortization Schedule.

• The monthly payment for a given loan pays the principle and the interest.

• The monthly interest is computed by multiplying the monthly interest rate and the balance (the

remaining principle).

• The principle paid for the month is therefore the monthly payment minus the monthly interest.

• Write a program that lets the user enter the loan amount, number of years, and the

annual interest rate, and then displays the amortization schedule for a loan in a

formatted table.

• Compute the monthly payment and total payment amounts

• Monthly payment is computed by:
𝑎

(1+𝑟 𝑛−1)/(𝑟(1+𝑟)^𝑛)
, where 𝑎 is the loan amount, 𝑟 is the

monthly interest rate, and 𝑛 is the number of payments

EXERCISE

• Write a program with functions that draws a special version of the Olympic

flag for the 2020 games.

Tokyo 2020

EXERCISE

• Develop a module replicating some of the basic functionality of the GoPiGo3

library:

• Drive meters

• Turn radians

• Go to point (relative to current location)

• Orbit left/right

• Only use methods that engage/disengage motors and the timing library (e.g.,

you can use forward but not drive_cm)

