
CHAPTER 5
LOOPS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

CONTROL FLOW

• Control flow.

• Sequence of statements that are actually executed in a program.

• Conditionals and loops: enable us to choreograph control flow.

statement 2

statement 1

statement 4

statement 3

boolean 2

true

false

statement 2

boolean 1

statement 3

false

statement 1

true

straight-line control flow control flow with conditionals and loops

MOTIVATIONS

• Suppose that you need to print a string (e.g., "Welcome to Python!") a

hundred times. It would be tedious to have to write the following statement a

hundred times:

print("Welcome to Python!")

So, how do you solve this problem?

• How about altering our guessing game program to allow 20 tries?

OPENING PROBLEM

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

print("Welcome to Python!")

…
print("Welcome to Python!")

print("Welcome to Python!")

100

times

THE WHILE LOOP

INTRODUCING WHILE LOOPS

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

WHILE LOOP FLOW CHART

1. while loop-continuation-condition:

2. # loop-body

3. Statement(s)

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

count < 100?

True

print("Welcome to Python!")

count += 1

False

count = 0

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory Output

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Initialize Count

Memory

count: 0

Output

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is true

Memory

count: 0

Output

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Output

Memory

count: 0

Output

Welcome to Python

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1 Increment count

Memory

count: 0 1

Output

Welcome to Python

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is true

Memory

count: 0 1

Output

Welcome to Python

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory

count: 0 1

Output

Welcome to Python

Welcome to Python

Output

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Memory

count: 0 1 2

Output

Welcome to Python

Welcome to Python

Increment count

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Count < 2 is false

Memory

count: 0 1 2

Output

Welcome to Python

Welcome to Python

TRACING WHILE LOOPS

1. count = 0

2. while count < 2:

3. print("Welcome to Python")

4. count += 1

Continue after

Memory

count: 0 1 2

Output

Welcome to Python

Welcome to Python

EXAMPLES – WITH A PARTNER

• What are the values of 𝑛 and 𝑚 after this program:

n = 1234567

m = 0

while n != 0:

m = (10*m) + (n % 10)

n //= 10

• Show the trace of the program at each step

QUESTION

• What is wrong with the following code?

• What happens?

• Fix it and explain what the code outputs

1. i, N = 0, 10000

2. while i <= N:

3. print(i)

4. i = i + 5

ACTIVITY

• Write an algorithm to compute the number of digits an integer has.

• Example: input – 34567 output – 5

• Bonus: modify your algorithm to compute the number of “digits” that the

number would have if converted to another base, e.g., binary, octal, or

hexadecimal

CAUTION

• Don’t use floating-point values for equality checking in a loop control. Since floating-point

values are approximations for some values, using them could result in imprecise counter values

and inaccurate results. Consider the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

1. item, sum = 1, 0

2. while item != 0: # No guarantee item will be 0

3. sum += item

4. item -= 0.1

5. print(sum)

THE FOR LOOP

FOR LOOPS

1. for var in sequence:

2. # loop body

3. Statement(s)

Example

1. for x in range(0, 100):

2. print("Welcome to Python!")

Initialize var to first

element

Have all elements

in sequence

been visited?

Statement(s)

Try to update var

to be the next

element in the

sequence

Here "end" refers to 1

after the last element of

the sequence.

True False

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory Output

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Initialize x

Memory

x: 0

Note range(0, 2) is [0, 1]

Output

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Have all elements been visited? No

Memory

x: 0

Note range(0, 2) is [0, 1]

Output

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory

x: 0

Note range(0, 2) is [0, 1]

Output

Welcome to Python!

Output

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Try to set x to next

element of sequence

Memory

x: 0 1

Note range(0, 2) is [0, 1]

Output

Welcome to Python!

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory

x: 0 1

Note range(0, 2) is [0, 1]

Output

Welcome to Python!

Have all elements been visited? No

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory

x: 0 1

Note range(0, 2) is [0, 1]

Output

Welcome to Python!

Welcome to Python!

Output

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory

x: 0 1

Note range(0, 2) is [0, 1]

Output

Welcome to Python!

Welcome to Python!

Try to set x to next

element of sequence

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory

x: 0 1

Note range(0, 2) is [0, 1]

Output

Welcome to Python!

Welcome to Python!

Have all elements been visited? Yes

TRACING FOR LOOPS

1. for x in range(0, 2):

2. print("Welcome to Python!")

Memory

x: 0 1

Note range(0, 2) is [0, 1]

Output

Welcome to Python!

Welcome to Python!

Continue after

RANGE

• Range is a method that generates a sequence of integer numbers

• range(a, b, step) – generates numbers from a up to but not including b with an

increment of step, e.g., range(2, 10, 2) returns 2, 4, 6, 8

• range(a, b) – generates numbers from a up to but not including b with an increment

of 1, e.g., range(1, 5) returns 1, 2, 3, 4

• range(b) – generates numbers between 0 and b with an increment of 1, e.g.,

range(3) returns 0,1, 2

PRACTICE

• Group 1: Write a for loop to output all numbers between integers 𝑎 and 𝑏

• Group 2: Write a for loop to output the multiples of an integer 𝑎 up to 𝑁

• Group 3: Write a for loop to output all the even numbers from 100 to 999 in

reverse order.

COMPARE FOR LOOPS TO WHILE LOOP

1. count = 0

2. while count < 100:

3. print("Welcome to Python")

4. count += 1

1. for x in range(1, 100):

2. print("Welcome to Python!")

Note, each has their own use.

For loops are a special case in which each element of a sequence is

visited. In this case (and only this case) are for-loops appropriate in

Python.

NESTING

• In control flow, nesting is where you place a control structure inside of another

• Example: 2 for loops to print a multiplication table

1. for i in range(0, 10):

2. for j in range(0, 10):

3. print(str(i) + "*" + str(j) + " = "

+ format(i*j, "2d"), end=" ")

4. print() # Print a new line

EXERCISE – FIX THE GUESSING GAME

• Lets fix our guessing game program to allow up to 20 guesses. Additionally,

try to protect against bad input

• Program this together

• If you get lost program is on following slides (split into multiple slides)

EXERCISE – WHERE TO BEGIN

• When developing programs

• Always think first!

• Sketch out solution, i.e., plan

• Implement solution

• Test solution

• Repeat!

• Called iterative development

Plan

Implement

Test

EXERCISE – FIX THE GUESSING GAME

1. import random

2.
3. # Grab a random number

4. rn = random.randint(1, 99)

5. un = 0

6. guesses = 0

7.
8. # Allow user to continually guess

9. while rn != un and guesses < 20:

10. un = int(input("Please enter a

number between 1 and 99: "))

11.

12. if un < 1 or un > 99:

13. print("Invalid guess.")

14. elif un == rn:

15. print("You won!")

16. elif un > rn:

17. print("Too high")

18. guesses += 1

19. else: # un < rn

20. print("Too low")

21. guesses += 1

22.
23. if guesses == 20:

24. print("You lost. Out of

guesses. The correct number

is " + str(rn) + ".")

MONTE CARLO SIMULATION

GAMBLER'S RUIN

• Gambler's ruin. Gambler starts with $stake and places $1 fair bets until going

broke or reaching $goal.

• What are the chances of winning?

• How many bets will it take?

• One approach. Monte Carlo simulation.

• Flip digital coins and see what happens.

• Repeat and compute statistics.

GAMBLER'S RUIN

1. import random

2.
3. stake, goal, T = eval(input("Enter stakes, goal, and T: "))

4.
5. wins = 0

6. for t in range(T):

7. cash = stake

8. while cash > 0 and cash < goal:

9. if random.random() < 0.5:

10. cash += 1

11. else:

12. cash -= 1

13. if cash == goal:

14. wins += 1

15.
16. print(wins, "wins of", T)

% python3 Gambler.py 5 25 1000

191 wins of 1000

% python3 Gambler.py 5 25 1000

203 wins of 1000

% python3 Gambler 500 2500 1000

197 wins of 1000

OTHER CONTROL FLOW STATEMENTS

OTHER HELPFUL STATEMENTS FOR LOOPS

• break – immediately exit the loop. Do

not continue executing any more of the

loop. Example:

while True:

if q-key-is-pressed():

quit the game

break

Game-loop()

• continue – immediately skip to the end of the

body of the loop, i.e., start next iteration.

Example:

for i in range(0, 10):

if(isPrime(i))

OCD against prime numbers

continue

HandleNotPrimes()

CONTROL FLOW SUMMARY

• Control flow.

• Sequence of statements that are actually executed in a program.

• Conditionals and loops: enable us to choreograph the control flow.

Control Flow Description Examples

Straight-line programs All statements are executed

in the order given

Conditionals Certain statements are

executed depending on the

values of certain variables

if; if-else

Loops Certain statements are

executed repeatedly until

certain conditions are met

while; for

EXERCISE

• Write a program to draw a checkerboard pattern with Turtle (either a

Checker's board or a Chess board)

• You can set the speed of the turtle to infinity (turtle.speed(0))

• Turtle allows the ability to draw a filled rectangle with turtle.begin_fill() and

turtle.end_fill()

