
CHAPTER 2
ELEMENTARY PROGRAMMING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

NEXT STEP IN PROGRAMMING

• Computations! Support for basic mathematics

• Imagine, computing interest on a loan, dividend on a stock, or even computing

an angle to go to a specific location

• Here we make variables that store data and then alter those values which are

stored.

EXAMPLE: COMPUTING THE AREA

ComputeArea.py

1. # Assign a value to radius

2. radius = 20

3.
4. # Compute the area

5. area = radius * radius * 3.14159

6.
7. # Display the result

8. print("The area for a circle with radius",

radius, "is", area)

Lets practice tracing, but

first a note on memory

MEMORY

• Memory is storage for data and programs

• We will pretend that memory is an infinitely long piece of tape separated

into different cells

• Each cell has an address, i.e., a location, and a value

• In the computer these values are represented in binary (0s and 1s) and

addresses are located in hexadecimal (base 16, 0x)

0x0 0x1 0x2 0xA

… …x y z

EXAMPLE: COMPUTING THE AREA

ComputeArea.py

1. # Assign a value to radius

2. radius = 20

3.
4. # Compute the area

5. area = radius * radius * 3.14159

6.
7. # Display the result

8. print("The area for a circle with radius",

radius, "is", area)

Output

Memory

The area for a circle with

radius 20 is 1256.636

radius: 20

area: 1256.636

Actually operations are evaluated in a specific

order. Temporary values are stored for these

intermediate computations.

print can output a series of values separated by a

comma. Each value is separated by a space in the

output

A special symbol =

gives a value to a

variable, called

assignment.

READING INPUT FROM THE CONSOLE

ComputeArea.py

1. # Assign a value to radius

2. radius = eval(input("Enter a value for a radius: "))

3.
4. # Compute the area

5. area = radius * radius * 3.14159

6.
7. # Display the result

8. print("The area for a circle with radius",

radius, "is", area)

eval is a function

that converts those

key strokes to a

value

input is a

function to collect

key strokes from

the console

REPRESENTING DATA

WHAT ABOUT THE 0S AND 1S?

• Yes, computers operate in 0s and 1s. The python interpreter handles this

business for us, but memory also stores values as 0s and 1s

• Memory also stores entirely 0s and 1s

• So what we need to know is how

computers do this

INTEGER REPRESENTATION

• First, a look at our number system. It is base 10, meaning we use 10 different

symbols (the digits). Lets look at an example number: 1037.

• And adding we use carry-and-add

𝟏 𝟎 𝟑 𝟕

+ 0 0 4 9

1 0 8 6

1 0 3 7

103 = 1000 102 = 100 101 = 10 100 = 1

1 ∗ 103 + 0 ∗ 102 + 3 ∗ 101 + 7 ∗ 100 = 1037

INTEGER REPRESENTATION

• Synonymously, binary numbers work the same way. Except instead of base 10, it is

base 2. A digit can only be 0 or 1. Example: 0010 0101

• And adding 0010 1010 + 0000 0101

• Note there are other common number systems: Octal (base 8, digits 0-7) and

Hexadecimal (base 16, digits 0-9 and A-F, used for memory addresses)

𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏

+ 0 0 0 0 0 1 0 1

0 0 1 0 1 0 1 0

0

0

INTEGER REPRESENTATION

• By limiting the number of bits, we limit the expressiveness of the data type

• Means that if we only have 2 bits, we can only represent 4 numbers: 00, 01, 10, 11

• A 64 bit number can only represent values from [−264, 264)

• In programming, we must make conscious decisions about this otherwise there

can be severe consequences

DATA TYPES

• Overall, data types define the available operations on and range of the data

representation. Additionally, it notes how it is stored in memory.

• Right now we have seen:

• Strings – sequences of characters, e.g., "Hello"

• Floating point numbers – representing real numbers with fractional components, e.g., 3.54

• Integers – representing positive and negative whole numbers, e.g., 15

• I want you to know about these, even though python will hide them from you and

treat them fluidly

ACTIVITY

• With a partner

• Convert the binary number 1001 1001 to decimal

• Add the binary number 0101 0101 to 1001 1001 (DO NOT DO THIS IN

DECIMAL) and then convert to a decimal number

• Bonus: 0xA1 to decimal, add 0x0E to it and convert to decimal. Hint: 0x

means that the number is a hexadecimal (base 16)

VARIABLES AND NAMING

IDENTIFIERS (NAMES)

• An identifier is a sequence of characters that consist of letters, digits,

underscores (_), and asterisk (*).

• An identifier must start with a letter or an underscore (_).

• An identifier cannot be a reserved word. (See Appendix A, “Python

Keywords,” for a list of reserved words).

• An identifier can be of any length.

VARIABLES

• A variable is a named piece of data (memory). It stores a value!

• It has a type that defines how the memory is interpreted and what operations

are allowed

var = value

EXPRESSIONS

• Expressions are combinations of literals, variables, operations, and function

calls that generate new values

•
3+4𝑥

5
−

10 𝑦−5 𝑎+𝑏+𝑐

𝑥
+ 9

4

𝑥
+

9+𝑥

𝑦

• is translated to

• (3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

ASSIGNMENT STATEMENTS

• Assignment statements give values to a variable

• x = 1; // Assign 1 to x;

• radius = 1.0; // Assign 1.0 to radius;

• a = 'A'; // Assign 'A' to a;

SIMULTANEOUS ASSIGNMENT

• Python allows a shorthand to create/assign multiple variables at a time.

Variables and expressions will be comma separated. An example:

x, y = (a+b)/2, (a-b)/2

NAMED CONSTANTS

• Often, we need constants in programs, e.g., 𝜋., whose value never changes.

• Python does not have a special syntax for naming constants. You can simply

create a variable to denote a constant. To distinguish a constant from a

variable, use all uppercase letters to name a constant.

• PI = 3.14159

• SIZE = 3

NAMING CONVENTIONS

• Choose meaningful and descriptive names.

• Typically begin with lower case

• Python typically names with underscores separating words (snake casing), but other

styles capitalize the first letter of each subsequent word (camel casing):

• my_area_variable

• myAreaVariable

• Constants will be all caps using snake casing: MY_PI_CONSTANT

• Be consistent!

LITERALS

• A literal is a constant value that appears directly in the program. For

example, 34, 1,000,000, and 5.0 are literals in the following statements:

• i = 34

• x = 1000000

• d = 5.0

SCIENTIFIC NOTATION

• Floating-point literals can also be specified in scientific notation, for example,

1.23456e+2, same as 1.23456e2, is equivalent to 123.456, and 1.23456e-

2 is equivalent to 0.0123456. E (or e) represents an exponent and it can be

either in lowercase or uppercase.

EXPRESSIONS

NUMERIC OPERATORS

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Float Division 1 / 2 0.5

// Integer Division 1 // 2 0

** Exponentiation 4 ** 0.5 2.0

% Remainder 20 % 3 2

INTEGERS
DIVISION

• Integers do not store decimals

• Division computes how many times a divisor evenly goes into a number

• Remainder (modulus) computes what is left over

• 5 / 2 yields an integer 2

• 5 % 2 yields 1 (the remainder of the division)

• Practice:

• What is 3456421 % 2?

• 25%3?

• 87%4?

HOW TO EVALUATE AN EXPRESSION

• Though Python has its own way to

evaluate an expression behind the

scene, the result of a Python

expression and its corresponding

arithmetic expression are the same.

• Therefore, you can safely apply the

arithmetic rules for evaluating a

Python expression.

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

UNDERFLOW AND OVERFLOW

• When a floating-point variable is assigned a value that is too large (in size) to be

stored, it causes overflow, a run time exception. Example:

245 ** 1000

• When a floating-point number is too small (i.e., too close to zero) to be stored, it

causes underflow. Python approximates it to zero. So normally you should not be

concerned with underflow.

• Questions

• Why does overflow/underflow occur?

• What types of applications would we care about them?

EXERCISE

• Write a program to compute the average of three numbers

• Trace the execution in memory if the user enters 3, 5, 7

AUGMENTED ASSIGNMENT OPERATORS

Operator Name Example Equivalent

+= Addition assignment i += 8 i = i + 8

-= Subtraction assignment i -= 8 i = i - 8

*= Multiplication assignment i *= 8 i = i * 8

/= Float division assignment i /= 8 i = i / 8

//= Integer division assignment i //= 8 i = i // 8

%= Remainder assignment i %= 8 i = i % 8

**= Exponent assignmnet i **= 8 i = i ** 8

TYPE CONVERSION

TYPE CONVERSION

• Use int(), float(), str() to convert any type to integer, floating-point, or

string respectively

• Consider the following statements and their results:

• int(4.7) → 4

• float(4) → 4.0

• str(4) → "4"

• To round floating point numbers use round()

• round(4.7) → 5

EXERCISE

• Write a program to compute sales tax for a purchase.

• How could you alter your program to only store 2 decimal places? Try it!

• Trace your program with a purchase of $100

EXERCISE

• With turtle graphics:

• Write a program that asks the user to enter an 𝑥, 𝑦 coordinate representing the center

of a rectangle. Additionally, ask the width and height of the rectangle.

• Draw the rectangle.

CHAPTER 3
MATH, STRINGS, AND OBJECTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO PROGRAMMING USING PYTHON, LIANG (PEARSON 2013)

MATH MODULE

• Python provides many useful mathematics methods in its Math module for

performing common mathematical functions.

• In order to use them we need to understand:

• What a function is

• How to use functions

• Where we look up possible functions to use

EXAMPLES OF MATH MODULE

max(2, 3, 4) # Returns a maximum number : in this case 4

min(2, 3, 4) # Returns a minimum number : in this case 2

round(3.51) # Rounds to its nearest integer

round(3.4) # Rounds to its nearest integer

abs(-3) # Returns the absolute value

pow(2, 3) # Same as 2 ** 3

THE MATH FUNCTIONS

Function Description Example

fabs(x) Returns the absolute value of the argument. fabs(-2) is 2

ceil(x) Rounds x up to its nearest integer and ceil(2.1) is 3

 returns this integer. ceil(-2.1) is -2

floor(x) Rounds x down to its nearest integer and floor(2.1) is 2

 returns this integer. floor(-2.1) is -3

exp(x) Returns the exponential function of x (e^x). exp(1) is 2.71828

log(x) Returns the natural logarithm of x. log(2.71828) is 1.0

log(x, base) Returns the logarithm of x for the specified log10(10, 10) is 1

 base.

sqrt(x) Returns the square root of x. sqrt(4.0) is 2

sin(x) Returns the sine of x. x represents an angle sin(3.14159 / 2) is 1

 in radians. sin(3.14159) is 0

asin(x) Returns the angle in radians for the inverse asin(1.0) is 1.57

 of sine. asin(0.5) is 0.523599

cos(x) Returns the cosine of x. x represents an cos(3.14159 / 2) is 0

 angle in radians. cos(3.14159) is -1

acos(x) Returns the angle in radians for the inverse acos(1.0) is 0

 of cosine. acos(0.5) is 1.0472

tan(x) Returns the tangent of x. x represents an tan(3.14159 / 4) is 1

 angle in radians. tan(0.0) is 0

fmod(x, y) Returns the remainder of x/y as double. fmod(2.4, 1.3) is 1.1

degrees(x) Converts angle x from radians to degrees degrees(1.57) is 90

radians(x) Converts angle x from degrees to radians radians(90) is 1.57

STRINGS AND CHARACTERS

Letter = 'A' # Same as letter = "A"

numChar = '4' # Same as numChar = "4"

message = "Good morning" # Same as message = 'Good morning'

• A string is a sequence of characters. String literals can be enclosed in matching single

quotes (') or double quotes ("). Python does not have a data type for characters. A

single-character string represents a character.

• Strings have many methods to use to manipulate their data

THE STRING CONCATENATION OPERATOR

• You can use the + operator add two numbers. The + operator can also be

used to concatenate (combine) two strings. Here are some examples:

• message = "Welcome " + "to " + "Python"

READING STRINGS FROM THE CONSOLE

• To read a string from the console,

use the input function. For example,

the following code reads three

strings from the keyboard:

• s = input("Enter a string: ")

• print("s is " + s)

EXAMPLES OF STRING OBJECT METHODS

• s = "Welcome"

• s1 = s.lower() # Invoke the lower method, stores 'welcome'

• s2 = s.upper() # Invoke the upper method, stores 'WELCOME'

STRIPING BEGINNING AND ENDING WHITESPACE
CHARACTERS

• Another useful string method is strip(), which can be used to strip the

whitespace characters from the both ends of a string.

• s = "\t Welcome \n"

• s1 = s.strip() # Invoke the strip method, s1 stores 'Welcome'

METHODS

• Methods are subroutines that we would like to (re)use again and again in

code

• For example, would you like a method to compute 𝑥 or write a lengthy

algorithm every time you wish to use it?

• Python provides many useful methods. Some we have seen:

• print(), input(), round()

INTERPRETING FUNCTIONS/METHODS

• Consider the following from the Math library:

sqrt(x)

• sqrt is an identifier, i.e., a name, for this method

• x is called a parameter, or an argument. This is the input to the method.

• Methods can optionally output data too, in this case it will output a number.

• In a few weeks, we will learn to write our own methods. For now, we need to

know how to use them.

INTRODUCTION TO OBJECTS AND METHODS

• In Python, all data—including numbers and strings—are actually objects.

• An object is an entity. Each object has an id and a type. Objects of the same

kind have the same type. You can use the id function and type function to get

these information for an object.

INVOKING A METHOD

• There is a difference between these math functions and how we used turtle

• Methods sometimes depend on the value of an object/class and sometimes

they do not. Common math functions, like sqrt, do not need to know anything

besides the parameter. However, other things like turtle needs to know where

the turtle currently is, so we invoke methods from a variable instead:

• turtle.forward(100) //Use the variable

FORMATTING NUMBERS AND STRINGS

• Often it is desirable to display numbers in certain format. For example, the

following code computes the interest, given the amount and the annual interest

rate.

• The format function formats a number or a string and returns a string.

format(item, format-specifier)

FORMATTING FLOATING-POINT NUMBERS

 10 . 2 f

format(57.467657, '10.2f')

format(12345678.923, '10.2f')

format(57.4, '10.2f')

format(57, '10.2f')

field width

precision

conversion code

format specifier

□□□□□57.47

12345678.92

□□□□□57.40

□□□□□57.00

10

FORMATTING IN SCIENTIFIC NOTATION

• If you change the conversion code from f to e, the number will be formatted in

scientific notation. For example

format(57.467657, '10.2e')

format(0.0033923, '10.2e')

format(57.4, '10.2e')

format(57, '10.2e')

□□5.75e+01

□□3.39e-03

□□5.74e+01

□□5.70e+01

10

FORMATTING AS A PERCENTAGE

• You can use the conversion code % to format numbers as a percentage. For

example,

format(0.53457, '10.2%')

format(0.0033923, '10.2%')

format(7.4, '10.2%')

format(57, '10.2%')

□□□□53.46%

□□□□□0.34%

□□□740.00%

□□5700.00%

10

JUSTIFYING FORMAT

• By default, the format is right justified. You can put the symbol < in the format

specifier to specify that the item is a left justified in the resulting format within

the specified width. For example,

format(57.467657, '10.2f')

format(57.467657, '<10.2f')

□□□□□57.47

57.47

10

FORMATTING STRINGS

• You can use the conversion code s to format a string with a specified width.

For example,

format("Welcome to Python", '20s')

format("Welcome to Python", '<20s')

format("Welcome to Python", '>20s')

Welcome to Python

Welcome to Python

□□□Welcome to Python

20

EXERCISE

• Recall there is more information online and in your book

• I assume you know what is in Ch. 3 of your book

• Write a program that prompts the user to enter a side length and an angle

from 0°, 90° and draws a right triangle accordingly. Label each side length

and each angle using the turtle module.

400

300
500

30°

60°

90°

