
CMSC 150
INTRODUCTION TO COMPUTING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH INTRODUCTION TO PROGRAMMING USING PYTHON,
LIANG (PEARSON 2013)

LECTURE 1

• INTRODUCTION TO COURSE

• COMPUTER SCIENCE

• HELLO WORLD

WELCOME

• Questions?

SYLLABUS

• Questions?

WHAT IS COMPUTER SCIENCE AND COMPUTING?

COMPUTER SCIENCE

• Your thoughts?

• Google: “The study of the principles and use of computers”

• Wikipedia: “The scientific and practical approach to computation and its applications”

• Dictionary.com: “The science that deals with the theory and methods of processing information

in digital computers, the design of computer hardware and software, and the applications of

computers”

• Edsgar Dijkstra: “Computer Science is no more about computers than astronomy is about

telescopes”

COMPUTER SCIENCE

• Study of algorithms

• Study of computing tools

• It is not just:

• Programming

• Microsoft office

• Typing

• Electronics

• Etc.

Input

Algorithm

Output

ROBOTICS

• Design, automation, and application of robots

• A robot is a mechanical machine capable of carrying out a complex series of

actions automatically

• We will study computer science through this application

• Allows a physical manifestation of our programs

• Comlplex – allows a deep-dive into the subject

• Fun!

PROBLEM

• Work in pairs/triplets

• Create a methodology to move a robot from point A to point B

• Determine the input

• Determine the algorithm

• Determine the output

• Put another way…tell a computer how to do this task

PROGRAMMING

• Even though computer science is not about

the computer, we still need to tell the

computer what to do!

• We do this through programming, or the

act of writing a computer program, known

as software – its just instructions to the

computer

• Programming allows us to push the

boundaries of science, view imaginary

worlds, and improve our daily lives!

PROGRAMMING

A BRIEF NOTE ON PROGRAMMING LANGUAGES

• Machine code – 0’s and 1’s…or simple commands. It is the set of primitive instructions built

into the computer’s architecture or circuits. Extremely tedious and error prone

• Assembly code – simple commands (ADD ra rb rc) to make programming easier to

understand. An assembler translates the commands to machine code. Extremely tedious but

less error prone.

• High level languages – English-like commands that allow programming to be less tedious, less

error prone, and much more expressive! Examples: Java, C++, Matlab, etc

• Why we don’t use Natural language (English) – Its ambiguous…which vs which or break vs

break or run vs run…ah the madness!!!!

COMPUTER ORGANIZATION
A SOFTWARE PERSPECTIVE

User

Application Programs

Operating System

• Manages all resources (memory, files, etc)

Hardware

COMPUTER ORGANIZATION
A HARDWARE PERSPECTIVE

Central Processing Unit

(CPU)

• Processes commands as 0’s and 1’s

• Performs arithmatic

• Requests (reads) and writes to/from

memory

Input

• Files

• Keyboard

• Mouse

• Etc.

Memory

• Data encoded as 0s and 1s

• Cache

• Random Access Memory (RAM)

• Hard drive

Output

• Monitor

• Force feedback

• Files

• Etc.

Bus

COMPILING A HIGH LEVEL PROGRAM

Program

• In Java

Compiler

• Translation to another language

Machine Code

• Specific for an architecture

Execute Program

Output

Using a compiler

Program

• In Python

Interpreter

• Reads language directly

Execute Program

Output

Using an interpreter

Objects

Functions Lists

Control Flow

Math/String I/O

ExpressionsPrimitive data types

Any Program

HOW DO WE PROGRAM THE COMPUTER?

• We will use Python

• NOTE – This is an arbitrary choice. All languages build on the same basic building blocks

discussed in the course. So Python is merely the vessel to our exploration of computing!

• Major concepts:

WHY PYTHON?

• Python

• Widely used.

• Widely available.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs.

• Our study will

• Use a minimal subset of Python.

• Develop general programming skills that

are applicable to many languages.

• IT IS NOT ABOUT THE LANGUAGE!!!

“ There are only two kinds of programming

languages: those people always [gripe]

about and those nobody uses.”

– Bjarne Stroustrup

PYTHON2 VS PYTHON3

• We will specifically use Python3 in this class

• Many resources online teach/use Python2

• Python3 is not backwards compatible, so be careful with using online resources

WALK THROUGH PROGRAMMING

1. PROGRAM HELLOWORLD

2. PROGRAM HELLOGRAPHICS

3. PROGRAM HELLOROBOTICS

4. TURN THIS SET OF PROGRAMS IN THROUGH GITHUB

HELLO WORLD

HelloWorld.py

1. #Print two messages

2. print("Hello class")

3. print("Welcome to Robotics")

• Run: python3 HelloWorld.py

TRACING

HelloWorld.py

1. #Print two messages

2. print("Hello class")

3. print("Welcome to Robotics")

• Tracing is the activity of following a computation by hand. We will regularly do this

in and out of class

• Not a classroom activity! Professionals do this regularly on sections of programs

• Typically to determine when something goes wrong

Output

Memory

Hello Class

Welcome to Robotics

VS CODE AND TERMINAL

• In this class, we will exclusively use Visual Studio Code (VS Code) text editor

to write programs, its terminal to run our programs, and GIT to turn in

assignments

• Download and setup VS Code for activities tomorrow

• Follow course website to setup python and GIT

TERMINAL REFERENCE GUIDE

• A terminal is a window to interact with your operating system through

commands. Things to know:

• You are always in a specific directory, called the current (or working) directory

• Filenames are specified “relative”ly – this means you have to be in the same directory or

refer to the location relative to your current directory

• Common commands (to move through folders and create them (may be

different on Windows machines)

• pwd – print the current directory

• cd – change directory, e.g., cd Desktop

• ls – print everything in a directory

• mkdir – make a new directory, e.g., mkdir HelloWorldProject

ANATOMY OF A PYTHON PROGRAM

• Statements

• Comments

• Indentation

STATEMENT

• A statement represents an action or a sequence of actions.

• The statement print("Hello class")in the program is a statement to

display the message "Hello class".

HelloWorld.py

1. #Print two messages

2. print("Hello class")

3. print("Welcome to Robotics")

INDENTATION

• The indentation matters in Python. Note that the statements are entered from

the first column in the new line. It would cause an error if the program is typed

as follows, for example:

HelloWorld.py

1. #Print two messages

2. print("Hello class")

3. print("Welcome to Robotics")

SPECIAL SYMBOLS

Character Name Description

()

" "

''' '''

Opening and closing

parentheses

Pound sign

Opening and closing

quotation marks

Opening and closing

quotation marks

Used with functions.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Enclosing a paragraph comment.

RESERVED WORDS

• Reserved words or keywords are words that have a specific meaning to the

compiler and cannot be used for other purposes in the program. We will see

many of these during the course of the semester. The previous program

doesn't have any specifically.

PROGRAMMING STYLE AND DOCUMENTATION

• Appropriate Comments

• Naming Conventions

• Proper Indentation and Spacing Lines

APPROPRIATE COMMENTS

• Include a summary at the beginning of the program to explain what the

program does, its key features, its supporting data structures, and any unique

techniques it uses.

• Document each variable, function, and class

• Include your name and a brief description at the beginning of the program.

NAMING CONVENTIONS

• Choose meaningful and descriptive names.

PROPER INDENTATION AND SPACING

• Indentation

• Indent two spaces.

• A consistent spacing style makes programs clear and easy to read, debug, and maintain.

• Spacing

• Use blank line to separate segments of the code.

PROGRAMMING ERRORS

• Syntax Errors

• Error in writing python syntax

• Runtime Errors also called Exceptions

• Causes the program to abort

• Logic Errors

• Produces incorrect result

SYNTAX ERRORS

• Syntax errors are errors from incorrectly written Python code.

• Anatomy of a compiler error:

File "filename.py", line num

ErrorType: Confusing description of error including code

where it occurs.

• Deal with errors by experience, google, stack overflow, etc. After you have

exhausted these resources…piazza/ask me. Advice, always handle the first

error…not the last one.

HelloWorld.py

1. //Print two messages

2. print("Hello class"

3. print(Welcome to Robotics")

Can anyone spot the

syntax errors?

RUNTIME ERRORS

• Runtime errors occur from impossible commands encountered while executing

the program

• Error message shows a "traceback" of the program execution. Right now, just

know that this tells where/why the error occurs.

HelloWorld.py

1. print(1/0)

LOGIC ERRORS

• Logic erorrs are incorrect computations that run without exceptions but

produce the incorrect output

HelloWorld.py

1. #Celcius conversion

2. print("Celcius 35 is Fahrenheit", (9//5)*35+32)

Can anyone spot the logic

error?

HELLO GRAPHICS

• Python makes programming with graphics and user interfaces (GUI) easy

• Turtle – Simple turtle graphics library

• Tkinter – Simple GUI library

• We will occasionally operate with graphics and GUIs

HELLO GRAPHICS

HelloGraphics.py

1. # Grab the correct python

2. # component

3. import turtle

4.
5. # Draw text

6. turtle.showturtle()

7. turtle.write("Welcome")

8.
9. # Movement

10. turtle.forward(100)

11. turtle.right(90)

12.
13. # Color

14. turtle.color("red")

15. turtle.forward(50)

16. # More advanced options

17. turtle.penup()

18. turtle.goto(-100, -50)

19. turtle.pendown()

20. turtle.goto(-100, 0)

21. turtle.color("green")

22. turtle.circle(25)

23.
24. # Keep the window open

25. turtle.Screen().exitonclick()

HELLO ROBOTICS

• We will use both the GoPiGo platform and the

CoDrone platforms

• Description of the robots found on my webpage

• We must run our programs remotely (use type

instead of cat on windows)

cat HelloRobotics.py |

ssh pi@gopigo00 python3 -

HelloRobotics.py

1. import time

2. from easygopigo3 import EasyGoPiGo3

3. # Make a robot

4. robot = EasyGoPiGo3()

5.
6. # Use the robot

7. robot.forward()

8. time.sleep(1)

9. robot.right()

10.time.sleep(2)
11.robot.stop()

GIT

• GIT is a version control software that is a professional tool

• We will use it for turning in assignments

• GIT is a distributed repository management, so basic items

• remote – the remote server

• clone/pull – copy/update the local copy from the remote copy

• push – send changes to the remote copy

• Changes are managed in the following phases

• Unstaged – changes you did without notifying GIT

• Stages – changes that you have notified GIT of (with add)

• Committed – changes saved by GIT locally (with commit)

• Push – changes shared by GIT remotely

Remote

• Hosted on
github.com

Local

• On your machine

clone/pull/push

add, commit

FOLLOW ALONG WITH TURNING IN ON GIT

• Accept assignment invitation

• Clone your repository

• Make changes and edit the

Coverpage

• Stage, Commit, and Push

• Can be done as much as you need

before the deadlines

EXERCISES

1. Create a program to share three things about yourself.

2. Write a program to show a pentagon. Try to use different colors for each

edge.

3. Write a program to make the GoPiGo move in

a simple pattern (like a pentagon)

4. Work on Programming Assignment 0

