
ROBOTICS
SENSE-PLAN-ACT LOOP

MOTIVATION

• In project 1 our robot couldn't return to exactly the same location as it started.

• Why?

• We can solve this though continual feedback! We need to make decisions

more often to adjust our actions.

• Supports algorithmic thoughts like: drive until we see a wall, or turn until we face the

right direction

• Essentially, we need a loop!

SENSE-PLAN-ACT LOOP

SENSE-PLAN-ACT LOOP

1. while robot_is_running():

2. sense() # Read all sensor information

3. plan() # Make a plan and decide action to take

4. act() # Send commands to the robot

EVENT DRIVEN PROGRAMMING

• This loop is related to an approach for programming called event driven

programming, which is extremely common in applications

• More generally for event driven programming:

while applicationIsRunning():

processInputs()

doSomethingAutomagically()

provideFeedbackToUser()

• Tricky part is to alter your thinking to rely on this single loop to make things

happen over time.

LETS THINK DEEPER ABOUT SOME ROBOT
FUNCTIONS

• robot.forward()

• Sets motors on

• Continues application program

immediately

• Requires us to use time.sleep() to create

motions

• robot.drive_cm(x)

• Set motors on for a set distance

• Waits to continue application program

until motion is complete

• Can specify fully:

robot.drive_cm(x, True)

True requires motion to

finish, False continues

program immediately.

vs

FRAME LIMITING

• Many robots need some fixed form of "waiting" to pass the time before the program ends.

We can include this in our loop:

1. while robot_is_running():

2. sense() # Read all sensor information

3. plan() # Make a plan and decide action to take

4. act() # Send commands to the robot

5. wait() # Wait for an amount of time, or to be more

sophisticated, wait for a remaining amount

of time based on fixed rate.

Work with a partner to alter the loop

for the added sophistication.

EXERCISE

• Write a method that mimics a bumper but with a more complex aspect

• Whenever an object is too close the robot stops and turns on a light

• Whenever an object is too far the robot should move forward and turn off its light

• The robot should continuously scan three different angles 45°, 90°, 135° for seeing if an

object is too close. (1 reading per action taken by the robot)

• After 30 seconds the program should terminate

• The robot should make an action every 0.33 seconds.

