1N
J\%

° CH7.
X LIST AND ITERATOR ADTS

([ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
}) DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND
O T GOLDWASSER (WILEY 2016)

?

1§ LIST ADT

® A Listis a general storage structure where items are accessed by index

®* Main operations

Element (Index i) - Returns the element of the list at index 1.

Element (Index i, Element e) - Replaces the element of the list at index i with element ¢,
and returns the old element.

(Index i, Element e) - Inserts a new element into the list so that it has index i, thus moving all
subsequent elements to one index later in the list

Element (Index i) - Removes and returns the element at index i, thus moving all subsequent
elements to one index earlier in the list.

® Auxiliary operations

() — return the number of elements in the list

() = return true if the list is empty

® An error condition occurs if any index is outside of the range [0, size () —1] (except for add
which can add at index size ()

EXAMPLE
1

* Follow along as we modify an initially empty list with the following operations

Operation Return /Error List Contents

* add (0, A) - (A)
* add (0, B) - (B, A)
® get(l) A (B, A)
® set (2, C) Error (B, A)

l * add(2, C) - (B, A, C)
® add (4, D) Error (B, A, C)
®* remove (1) A (B, C)

T P * add(1, D) - (B, D, C)

- * add (1, E) - (B, E, D, C)

®* get (4) Error (B, E, D, C)
* add (4, F) - (B, E, D, C, F)
* set (2, G) D (B, E, G, C, F)
* get (2) G (B, E, G, C, F)

ARRAY LISTS

® An obvious choice for implementing the list ADT is to use an array, A, where

Ali] stores (a reference to) the element with index i.

* With a representation based on an array A, the get (i) and set (i, e)
methods are easy to implement by accessing A[i] (assuming i is a legitimate

index).

* K\) /
1\) INSERTION (

/
O
® In an operation add (I, 0), we need to make room for the new element by
shifting forward the n — i elements Ali], ..., A[n — 1]
l ® |n the worst case (i = 0), this takes O(n) time

AT T T T T T T T 171

Cf 012 I q
O
AIIIIIIIiiiiIIIIIII

012 [n

A DRI T T 111
012 i

* K\) 4
1\0 ELEMENT REMOVAL {

O
® In an operation remove (1), we need to fill the hole left by the removed
element by shifting backward the n — i — 1 elements A[i + 1], ..., A[n — 1]
l ® |n the worst case (i = 0), this takes O(n) time
ACETTTTII T T T TTI T T T1]
Cf 012 i n
O " 'A"AAAA)
EENEEN S EEENEEEEE
012 | n

1\0 PERFORMANCE

/
O
® In an array-based implementation of a dynamic list:
* The space used by the data structure is O(n)
* Indexing the element (get /set) at i takes O(1) time
l * add and remove runin O(n) time

® In an add operation, when the array is full, instead of throwing an exception,

O we can replace the array with a larger one ...

1\) EXERCISE:

/
° ® Implement the Deque ADT with the List ADT
® This means that you have an instance member List L, and are responsible for
implementing (as pseudocode) the Deque methods
®* Deque ADT:
J) ® first (), last(), addFirst(e), addLast (e),
removeFirst (), removelLast (), size(), 1isEmpty ()
® List functions:
j) ;) ® get (1), set(i, e), add(i, e), remove (i), sizel(),

1sEmpty ()

O

A

1\0 LIST SUMMARY

add (i, e) 0(1) Best Case (i = n)
remove (O (n) Worst Case
O(n) Average Case

o -
- -

1\\5 INTERVIEW QUESTION 1

O

® Implement a function to check if a list is a palindrome.

!
[7

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

1§ INTERVIEW QUESTION 2

O

®* Write code to partition a list around a value x, such that all nodes less than x

come before all nodes greater than or equal to x.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

POSITIONAL LISTS

* K\) /
1\0 POSITIONAL LISTS {

/
O
* A Positional List provides a general abstraction for a sequence of elements
with the ability to identify the location of various elements
® A positional list operated with instead of indices
l *A is a location marker or token within the broader positional list, and

Cf is unaffected by changes elsewhere in the list
O

Q\)
1\) POSITION ADT

/
O
®* Main (and only) operation
* Element getElement () — access the element at this specific position in the data
structure

I/ T

AN ASIDE

SOLVING A PRACTICAL PROBLEM

Recall Linked Structures, e.g., a linked-list

Imagine a method returned a Node to a
user of the object, and the following
operations:

List 1

Node n < 1.someNode ()
n.next <«

What is the issue? Draw it out in memory.

® Positions provide a fool-proof pattern for giving
the internals of a structure to a user, they are
read-only. Compare with:
List 1
Position p « 1l.somePosition ()
p.getElement ()
{The only available operation}

O

1§ POSITIONAL LIST ADT

® Accessor operations

| .
[o

Position () — Returns the position of the first element (or null if empty).
Position () = Returns the position of the last element (or null if empty).

Position (Position p) - Returnsthe position immediately before a

position p (or null if at the beginning of the list).

Position (Position p) - Returnsthe position immediately after a

position p (or null if at the end of the list).

® Auxiliary operations

() — return the number of elements in the list

() —return true if the list is empty

O

)
[s

1§ POSITIONAL LIST ADT

®* Update operations

Position (Element e) - Inserts an element to the front of the list and
returns the newly created position.

Position (Element e) - Inserts an element to the end of the list and
returns the newly created position.

Position (Position p, Element <) - Inserts an element

immediately before position p and returns the newly created position.

Position (Position p, Element e) - Inserts an element

immediately after position p and returns the newly created position.

Element (Position p, Element e) - Replacesthe element of the list at

position p with element e, and returns the old element.

Element (Position p) - Removes and returns the element at position p.

EXAMPLE

* Follow along as we modify an initially empty list with the following operations

Operation Return/Error List Contents
®* addLast (8) P (p(8))
* first () P (p(8))
* addAfter (p, 5) q (p(8), a(5))
* before (q) P (p(8), a(5))
* addBefore (g, 3) r (p(8), r(3), a(d))
* r.getElement () K (p(8), r(3), a(3))
* after (p) r (p(8), r(3), a(5))
* before (p) null (p(8), r(3), a(5))
* addFirst (9) s (s(9), p(8), r(3), a(3))
* remove (last ())) (s(?), p(8), r(3))
* set(p, 7) 8 (s(?), p(7), r(3))

* remove (q) Error (s(2), p(7), ¥(3))

EXAMPLE
ITERATING THROUGH A POSITIONAL LIST

® Positional data structures are odd the first time you see them. Use this as a

template for writing loops. The key is to always invoke list methods, as position

has only one.

List 1
Position p « 1.first()
P F
p <« l.after (p)

O

1§ POSITIONAL LIST IMPLEMENTATION

® The most natural way to implement a

positional list is with a doubly-linked list.

—_———————— e ————

-~

. prev next \‘;
| ' |
1 element node

RS . -

S S e S e e e e s e) e) e)) e

" &) o)
! . . A
W g ~Z Z
elements

/.

1§ INSERTION, E.G., ADDAFTER (P, E)
P

O

...............................
. *e
.

LN
/1\% REMOVE (P)

EIE R
A B c D

1\0 PERFORMANCE

O

® Assume doubly-linked list implementation of Positional List ADT
* The space used by a list with n elements is O(n)
* The space used by each position of the list is O(1)
* All the operations of the List ADT run in O(1) time

!
[p

POSITIONAL LIST SUMMARY f

List Singly-Linked List Doubly- Linked

first (), 0(1) o)

last (),

addFirst (),

addLast (),
ZL addAfter ()

addBe fore (p O(n) Worst and Average case 0(1)
o , erase (0(1) Best case

size (0(1) 0(1)

//;; 1sEmpty

1\.\5 INTERVIEW QUESTION 3

/
O
®* When Bob wants to send Alice a message M on the internet, he breaks M into

n data packets, numbers the packets consecutively, and injects them into the
network. When the packets arrive at Alice's computer, they may be out of

l order, so Alice must assemble the sequence of n packets in order before she
can be sure she has the entire message. Using Positional Lists describe and

T 5 analyze an algorithm for Alice to do this.

®* Can you do better with a regular List?

1\0 ITERATORS

/
O
® An is a software design pattern that abstracts the process of scanning
through a sequence of elements, one element at a time.
® lterator ADT
l ®* Boolean () —returns true if there is at least one additional element in the
sequence, false otherwise.
T p ®* Element () — Returns the next element in the sequence.

* Some iterators offer a third operation: to modify the data structure while

scanning its elements

1§ USES OF ITERATORS

/]
O
® Abstracts a series or collection of elements
® A container, e.g., List or PositionalList
®* A stream of data from a network or file
l ®* Data generated by a series of computations, e.g., random numbers
® Facilitate generic programming of algorithms to operate on any source of datq, e.g.,
Cf finding the minimum element in the data
O

* Why?¢
®* While it is true we could just reimplement minimum as many times as needed, it is better to use

a trusted single implementation for: (1) correctness — no silly typos and (2) efficiency —

professional libraries are often better than what you could implement on your own.

O

)
[s

1\) TERABLE ADT

* An object is one which provides an iterator. It has a single operation:

® Tterator () — Returns an iterator of the elements in the collection.

® An instance of a typical collection class in Java, such as an ArraylList, is
Iterable (but not itself an iterator); it produces an iterator for its collection

as the return value of the 1terator () method.

® Each callto 1terator () returns a new iterator instance, thereby allowing

multiple (even simultaneous) traversals of a collection.

EXAMPLE IN PSEUDOCODE

® The following algorithm will compute the minimum of an iterable collection:

Algorithm minimum
Input: Iterable collection I of comparable Elements
l. Iterator it « l.iterator ()
2 . Element min «
it.hasNext ()
4. Element e « it.next ()

U1

e.compareTo (min) <
min < e

N

min

* K\) 4
1\0 EXAMPLE IN JAVA ¢

S ®* The following code will compute the minimum of an Iterable collection:
<E Comparable<E>> E minimum (
Iterable<E> 1terable) {
1) 2 Iterator<E> it = iterable.iterator () ;
3. E min = .
4, (it.hasNext ()) {
T O 5. E e = it.next () ;
o. (e.compareTo (min) < 0)
1. min = e;
8. }
9. min;
10.)

1\) EXERCISE

O

®* Write an algorithm and a Java program using iterators to compute whether a
collection contains only unique elements.

® Test your generic method with both a Java Arraylist and a Java LinkedList

!
[p

1\\5 THE FOR-EACH LOQOP

O

(

® Javd’s lterable class also plays a fundamental role in support of the “for-each” loop syntax:

(ElementType variable : collection) {
// loop body

l }

® Is equivalent to:

Iterator<ElementType> i1iter = collection.iterator();
f) (1ter.hasNext ()) {
ElementType variable = iter.next();

// loop body

K EXAMPLE IN PSEUDOCODE
\ (

O
® The following algorithm will compute the minimum of an iterable collection:
Algorithm minimum

J) Input: Iterable collection I of comparable Elements

1l .Element min «
T O Element e €l
e.compareTo (min) <
4, min < e
min

* K\) 4
1\0 EXAMPLE IN JAVA ¢

O
® The following code will compute the minimum of an lterable collection:
<E Comparable<E>> E minimum (
1) Iterable<E> iterable) {
E min = ;

(E e : i1terable) {
(e.compareTo (min) < 0)

[5

min = e;

min;

O Jo Ul WN

1\) EXERCISE

O

* Simplify your algorithm and Java program using the for-each loop construct to

determine whether a collection contains only unique elements.

!
[p

1§ FOR-EACH VS ITERATORS

/)
O
® For-each is not always a replacement for iterators
® In fact it only replaces the most common use of iterators — iterating entirely through a
collection
®* When you can't use a for-each loop, use iterators
® Essentially, when you need more power, use more power

® Remember this is about generic programming. Iterators abstract the
T O underlying collection. When you know your collection, you might be able to do

something different.

