
CH7.
LIST AND ITERATOR ADTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

LISTS

LIST ADT

• A List is a general storage structure where items are accessed by index

• Main operations

• Element get(Index i) – Returns the element of the list at index 𝑖.

• Element set(Index i, Element e) – Replaces the element of the list at index 𝑖 with element 𝑒,

and returns the old element.

• add(Index i, Element e) – Inserts a new element into the list so that it has index 𝑖, thus moving all

subsequent elements to one index later in the list

• Element remove(Index i) – Removes and returns the element at index 𝑖, thus moving all subsequent

elements to one index earlier in the list.

• Auxiliary operations

• size() – return the number of elements in the list

• isEmpty() – return true if the list is empty

• An error condition occurs if any index is outside of the range [0, size()−1] (except for add

which can add at index size()

EXAMPLE

• Follow along as we modify an initially empty list with the following operations

Operation Return/Error List Contents

• add(0, A)

• add(0, B)

• get(1)

• set(2, C)

• add(2, C)

• add(4, D)

• remove(1)

• add(1, D)

• add(1, E)

• get(4)

• add(4, F)

• set(2, G)

• get(2)

– (A)

– (B, A)

A (B, A)

Error (B, A)

– (B, A, C)

Error (B, A, C)

A (B, C)

– (B, D, C)

– (B, E, D, C)

Error (B, E, D, C)

– (B, E, D, C, F)

D (B, E, G, C, F)

G (B, E, G, C, F)

ARRAY LISTS

• An obvious choice for implementing the list ADT is to use an array, 𝐴, where

𝐴 𝑖 stores (a reference to) the element with index 𝑖.

• With a representation based on an array 𝐴, the get(𝑖) and set(𝑖, 𝑒)

methods are easy to implement by accessing 𝐴[𝑖] (assuming 𝑖 is a legitimate

index).

𝐴

0 1 2 ni

𝑁 − 10

INSERTION

• In an operation add(𝑖, 𝑜), we need to make room for the new element by

shifting forward the 𝑛 − 𝑖 elements 𝐴 𝑖 , … , 𝐴 𝑛 − 1

• In the worst case (𝑖 = 0), this takes 𝑂 𝑛 time

A

0 1 2 n

o

i

A

0 1 2 ni

A

0 1 2 ni

ELEMENT REMOVAL

• In an operation remove(𝑖), we need to fill the hole left by the removed

element by shifting backward the 𝑛 − 𝑖 − 1 elements 𝐴 𝑖 + 1 ,… , 𝐴 𝑛 − 1

• In the worst case (𝑖 = 0), this takes 𝑂 𝑛 time

A

0 1 2 nr

A

0 1 2 n

o

i

A

0 1 2 ni

PERFORMANCE

• In an array-based implementation of a dynamic list:

• The space used by the data structure is 𝑂 𝑛

• Indexing the element (get/set) at 𝑖 takes 𝑂 1 time

• add and remove run in 𝑂 𝑛 time

• In an add operation, when the array is full, instead of throwing an exception,

we can replace the array with a larger one …

EXERCISE:

• Implement the Deque ADT with the List ADT
• This means that you have an instance member List 𝐿, and are responsible for

implementing (as pseudocode) the Deque methods

• Deque ADT:

• first(), last(), addFirst(e), addLast(e),
removeFirst(), removeLast(), size(), isEmpty()

• List functions:

• get(i), set(i, e), add(i, e), remove(i), size(),
isEmpty()

LIST SUMMARY

Array

Fixed-Size or Expandable

List Singly or

Doubly Linked

add(i, e),

remove(i)

𝑂(1) Best Case (𝑖 = 𝑛)

𝑂(𝑛) Worst Case

𝑂(𝑛) Average Case

?

get(i), set(i, e) 𝑂(1) ?

size(), isEmpty() 𝑂(1) ?

INTERVIEW QUESTION 1

• Implement a function to check if a list is a palindrome.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

• Write code to partition a list around a value x, such that all nodes less than x

come before all nodes greater than or equal to x.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

POSITIONAL LISTS

POSITIONAL LISTS

• A Positional List provides a general abstraction for a sequence of elements

with the ability to identify the location of various elements

• A positional list operated with positions instead of indices

• A position is a location marker or token within the broader positional list, and

is unaffected by changes elsewhere in the list

POSITION ADT

• Main (and only) operation

• Element getElement() – access the element at this specific position in the data

structure

AN ASIDE
SOLVING A PRACTICAL PROBLEM

• Recall Linked Structures, e.g., a linked-list

• Imagine a method returned a Node to a

user of the object, and the following

operations:

List l

Node n ← l.someNode()

n.next ← null

• What is the issue? Draw it out in memory.

• Positions provide a fool-proof pattern for giving

the internals of a structure to a user, they are

read-only. Compare with:

List l

Position p ← l.somePosition()

p.getElement()

{The only available operation}

POSITIONAL LIST ADT

• Accessor operations

• Position first() – Returns the position of the first element (or null if empty).

• Position last() – Returns the position of the last element (or null if empty).

• Position before(Position p) – Returns the position immediately before a

position 𝑝 (or null if at the beginning of the list).

• Position after(Position p) – Returns the position immediately after a

position 𝑝 (or null if at the end of the list).

• Auxiliary operations

• size() – return the number of elements in the list

• isEmpty() – return true if the list is empty

POSITIONAL LIST ADT

• Update operations

• Position addFirst(Element e) – Inserts an element to the front of the list and

returns the newly created position.

• Position addLast(Element e) – Inserts an element to the end of the list and

returns the newly created position.

• Position addBefore(Position p, Element e) – Inserts an element

immediately before position 𝑝 and returns the newly created position.

• Position addAfter(Position p, Element e) – Inserts an element

immediately after position 𝑝 and returns the newly created position.

• Element set(Position p, Element e) – Replaces the element of the list at

position p with element 𝑒, and returns the old element.

• Element remove(Position p) – Removes and returns the element at position 𝑝.

EXAMPLE

• Follow along as we modify an initially empty list with the following operations

Operation Return/Error List Contents

• addLast(8)

• first()

• addAfter(p, 5)

• before(q)

• addBefore(q, 3)

• r.getElement()

• after(p)

• before(p)

• addFirst(9)

• remove(last())

• set(p, 7)

• remove(q)

p (p(8))

p (p(8))

q (p(8), q(5))

p (p(8), q(5))

r (p(8), r(3), q(5))

3 (p(8), r(3), q(5))

r (p(8), r(3), q(5))

null (p(8), r(3), q(5))

s (s(9), p(8), r(3), q(5))

5 (s(9), p(8), r(3))

8 (s(9), p(7), r(3))

Error (s(9), p(7), r(3))

EXAMPLE
ITERATING THROUGH A POSITIONAL LIST

• Positional data structures are odd the first time you see them. Use this as a

template for writing loops. The key is to always invoke list methods, as position

has only one.

List l

Position p ← l.first()

while p ≠ null do

p ← l.after(p)

POSITIONAL LIST IMPLEMENTATION

• The most natural way to implement a

positional list is with a doubly-linked list.

prev next

element

trailerheader nodes/positions

elements

node

INSERTION, E.G., ADDAFTER(P, E)

A B X C

A B C

p

A B C

p

X

q

p q

REMOVE(P)

A B C D

p

A B C

D

p

A B C

PERFORMANCE

• Assume doubly-linked list implementation of Positional List ADT

• The space used by a list with 𝑛 elements is 𝑂(𝑛)

• The space used by each position of the list is 𝑂(1)

• All the operations of the List ADT run in 𝑂(1) time

POSITIONAL LIST SUMMARY

List Singly-Linked List Doubly- Linked

first(),

last(),

addFirst(),

addLast(),

addAfter()

𝑂(1) 𝑂(1)

addBefore(p,

e), erase()

𝑂(𝑛) Worst and Average case

𝑂(1) Best case

𝑂(1)

size(),

isEmpty()

𝑂(1) 𝑂(1)

INTERVIEW QUESTION 3

• When Bob wants to send Alice a message M on the internet, he breaks 𝑀 into

𝑛 data packets, numbers the packets consecutively, and injects them into the

network. When the packets arrive at Alice's computer, they may be out of

order, so Alice must assemble the sequence of 𝑛 packets in order before she

can be sure she has the entire message. Using Positional Lists describe and

analyze an algorithm for Alice to do this.

• Can you do better with a regular List?

ITERATORS

ITERATORS

• An iterator is a software design pattern that abstracts the process of scanning

through a sequence of elements, one element at a time.

• Iterator ADT

• Boolean hasNext() – returns true if there is at least one additional element in the

sequence, false otherwise.

• Element next() – Returns the next element in the sequence.

• Some iterators offer a third operation: remove() to modify the data structure while

scanning its elements

USES OF ITERATORS

• Abstracts a series or collection of elements

• A container, e.g., List or PositionalList

• A stream of data from a network or file

• Data generated by a series of computations, e.g., random numbers

• Facilitate generic programming of algorithms to operate on any source of data, e.g.,

finding the minimum element in the data

• Why?

• While it is true we could just reimplement minimum as many times as needed, it is better to use

a trusted single implementation for: (1) correctness – no silly typos and (2) efficiency –

professional libraries are often better than what you could implement on your own.

ITERABLE ADT

• An Iterable object is one which provides an iterator. It has a single operation:

• Iterator iterator() – Returns an iterator of the elements in the collection.

• An instance of a typical collection class in Java, such as an ArrayList, is

Iterable (but not itself an iterator); it produces an iterator for its collection

as the return value of the iterator() method.

• Each call to iterator() returns a new iterator instance, thereby allowing

multiple (even simultaneous) traversals of a collection.

EXAMPLE IN PSEUDOCODE

• The following algorithm will compute the minimum of an iterable collection:

Algorithm minimum

Input: Iterable collection 𝐼 of comparable Elements

1.Iterator 𝑖𝑡 ← 𝐼.iterator()

2.Element 𝑚𝑖𝑛 ← null

3.while 𝑖𝑡.hasNext() do

4. Element 𝑒 ← 𝑖𝑡.next()

5. if 𝑒.compareTo(𝑚𝑖𝑛) < 0 then

6. 𝑚𝑖𝑛 ← 𝑒

7.return 𝑚𝑖𝑛

EXAMPLE IN JAVA

• The following code will compute the minimum of an Iterable collection:

1. public static <E extends Comparable<E>> E minimum(

Iterable<E> iterable) {

2. Iterator<E> it = iterable.iterator();

3. E min = null;

4. while(it.hasNext()) {

5. E e = it.next();

6. if(e.compareTo(min) < 0)

7. min = e;

8. }

9. return min;

10. }

EXERCISE

• Write an algorithm and a Java program using iterators to compute whether a

collection contains only unique elements.

• Test your generic method with both a Java ArrayList and a Java LinkedList

THE FOR-EACH LOOP

• Java’s Iterable class also plays a fundamental role in support of the “for-each” loop syntax:

for(ElementType variable : collection) {

// loop body

}

• Is equivalent to:

Iterator<ElementType> iter = collection.iterator();

while(iter.hasNext()) {

ElementType variable = iter.next();

// loop body

}

EXAMPLE IN PSEUDOCODE

• The following algorithm will compute the minimum of an iterable collection:

Algorithm minimum

Input: Iterable collection 𝐼 of comparable Elements

1.Element 𝑚𝑖𝑛 ← null

2.for all Element e ∈ 𝐼 do

3. if 𝑒.compareTo(𝑚𝑖𝑛)< 0 then

4. 𝑚𝑖𝑛 ← 𝑒

5.return 𝑚𝑖𝑛

EXAMPLE IN JAVA

• The following code will compute the minimum of an Iterable collection:

1.public static <E extends Comparable<E>> E minimum(

Iterable<E> iterable) {

2. E min = null;

3. for(E e : iterable) {

4. if(e.compareTo(min) < 0)

5. min = e;

6. }

7. return min;

8.}

EXERCISE

• Simplify your algorithm and Java program using the for-each loop construct to

determine whether a collection contains only unique elements.

FOR-EACH VS ITERATORS

• For-each is not always a replacement for iterators

• In fact it only replaces the most common use of iterators – iterating entirely through a

collection

• When you can't use a for-each loop, use iterators

• Essentially, when you need more power, use more power

• Remember this is about generic programming. Iterators abstract the

underlying collection. When you know your collection, you might be able to do

something different.

