GPAT – CHAPTER 12
NETWORKED GAMES
INTRODUCTION

• Networked games allow multiple players to connect over the internet and play together
• Provides a unique player experience to interact cooperatively, competitively, and social with other players
PROTOCOLS

Information sent over the internet (or network) is like sending a virtual letter. So it knows:

- Who sent it
- Where it is going
- Time it is sent
- Contents (data)

This is called a **packet**

- The logistical information is its **header**
- The data is its **payload**

The rules defining how a packet is laid out and what happens when it is sent is called a **protocol**

Internet protocol, IP, is the base protocol that must be followed to send any data over the internet. More complex schemes are built on top of it.
INTERNET CONTROL MESSAGING PROTOCOL (ICMP)

- Not designed for large data transmission, i.e., game data
- Useful for *echoing* to determining connectivity and measure *latency* by *pinging*
- Basically used to send a timestamp back and forth
TRANSMISSION CONTROL PROTOCOL (TCP)

• One of two methods to transmit game data

• Connection-based protocol that provides for guaranteed delivery of all packets in the correct order to a specific port on a computer

• If an acknowledgement is not received in a certain amount of time (timeout) a packet is resent

• Which games features is this useful for? Why is it not great for most games?
USER DATAGRAM PROTOCOL (UDP)

• Connectionless protocol that is "unreliable", i.e., you can send data to a port without actually having a connection
• No guarantee that a packet is received, nor in any particular order
 • Implement your own ordering through sequence numbering
• Most common for use in games. Why?
NETWORK TOPOLOGY
SERVER/CLIENT MODEL

- There is a central computer (server) that all other computers (clients) connect to.
- Most common in games today.
- Server is authoritative and validates clients' actions. Often supported by a dedicated server. Why?
- Clients often employ client prediction.
- Problems?
PEER-TO-PEER MODEL

• Clients connects to all other clients
• Play is often performed in lockstep, e.g., real-time strategy games
 • Actions are cued and executed every so often
• Game is simulated on clients individually (means no randomness possible)
CHEATING
• In information cheats, one player is able to get information that players are not normally allowed to have
 • Example – being able to find a stealth character because their position data is still sent by the server
 • Example – seeing all player movement in RTS games (map hack)
• Can be stopped by limiting available information or cheating countermeasures
OTHER CHEATS

• In **game state cheats** a player modifies the state of the game, thus breaking it
 • Example – host server modifies the game

• In a **man-in-the-middle attack** you route all information through another computer that intercepts and modifies packets
 • Can be overcome through encryption of packets
FGD – CHAPTER 17
DESIGN ISSUES FOR ONLINE GAMING
ADVANTAGES AND DISADVANTAGES OF ONLINE GAMING

Advantages
• Socializing
• Human intelligence over AI
• Online play vs local multiplayer
 • Why an advantage?

Disadvantages
• Technical issues
 • Communication
 • Latency
 • Dropped/garbled packets
• Harder to suspend disbelief
• Need to produce content
• Customer services
DESIGN ISSUES
ARRIVING PLAYERS

• Need to decide when players can join
 • Rolling starts (matches)
 • Immediately (requires fast gameplay)

• Get rid of the victory condition – rather aim for achievements

• Discourage competition between experienced and inexperienced players

• Be sure competition is consensual
DISAPPEARING PLAYERS

• Players can leave at any time and so you need to handle properly to ensure minimal disruption to others
 • The vanishing player forfeits
 • Institute a penalty for disconnections
 • Award victory to whomever is ahead at disconnection
 • Record as a tie or disconnected game
 • Abandon the game
 • Use referees
REAL-TIME VS TURN-BASED GAMES

• Considerations of turn-based:
 • Limit number of players in one game
 • Set time limit on players turn
 • Determine default action if player runs out of time
 • Let players do other things while waiting
Collusion is a form of cheating in which players who are supposed to be opponents work together in violation of the rules.

To reduce consider how players might:

- Share secret knowledge
- Pass cards under the table (transfer items)
- Take a dive (lose deliberately)
ASYNCHRONOUS GAMES

• In asynchronous games, players actions are not synchronized
 • Don’t have to be logged on
 • Don’t have to wait for others
• Mostly non-competitive
• Other considerations?
TECHNICAL SECURITY

• Use a secure protocol
 • Encrypt data
 • Implement heartbeats for disconnectivity
 • Add timestamp and unique serial number to packets

• Don't store sensitive data on the players computer

• Don't send the player data they aren't supposed to have

• Don't let the client perform sensitive operations
PERSISTENT WORLDS
HOW PERSISTENT WORLDS DIFFER FROM OTHER GAMES

• Persistent worlds constitute permanent environments in which players can play, retaining the state of their avatar

• Traditional narrative is difficult to implement because of the number of players, story can unfold by quests at varying scales

• Players can fill a large number of rich and varied roles

• Without a victory condition, gameplay is different as the player decides for themselves what to do (expressive vs reactive gameplay)
TYPES OF ONLINE PLAYERS

- Model proposed in 1997 to describe various types of players in online games
- Conjectures that a healthy online community requires a certain proportion of each type
CREATING AN AVATAR

Maximize expressiveness. Considerations:

• Unique name/handle
• Physical appearance
• History/experience
• Reputation
• Autobiography
WORLD MODELS

- Classic world models
 - Scavenger model
 - Social model
 - Dungeons & Dragons model
 - Player-versus-player model
 - Builder model
AVATAR DEATH

• Some options
 • Permanent death
 • Resurrection with reduced attributes
 • Resurrection with some property missing
THE NATURE OF TIME

• Game time must proceed at a fixed rate for all players
• Different than single player, how?
• Avoid design of time-consuming activities
• Time is irreversible
ECONOMIES

• Harder to tune

• Avoid being able to create something for nothing

• Maybe avoid fixed number of resources?
SOCIAL PROBLEMS
MANAGING CHAT

Consider:

• Limiting content
• Profanity filters
• Complaint and warning systems
• Blocking other players
• Moderated chat spaces
PLAYER-KILLER (PK) PROBLEM

• Should you allow players to kill each other?
• Pros:
 • Human intelligence
 • Interesting loot
 • Social experience
• Cons:
 • Unfair
 • Annoying to many players
• Justice mechanisms
 • No automated regulation
 • Flagging criminals
 • Reputation systems
 • PvP switch
 • Safe games (no PvP)
• Factions are a good solution usually
• Bottom line: you can't please everyone
 • It’s a fantasy world
 • People pay to play