
GPAT – CHAPTER 10
USER INTERFACES

MENU SYSTEMS

MENU STACK

• Ensure a menu system has a stack

• Need base class for menus

• Allows going back to a prior menu selection

• Its like allowing a user traversal of a tree

• On entering a new menu – push

• On exiting the current menu – pop

• Good to offer the ability to go to top menu

BUTTONS

• Each button needs at least two visual states

• Selected

• Unselected

• Maybe pressed state as well

• Possibly have a doubly-linked list of buttons or an array of

buttons tracking an index

• Back

• Forward

• Wrap

• Possibly have a 2D bounding box for clicking or tapping

• Event system to manage what happens when a button is

pressed

TYPING

• Supports allowing someone to

customize names for avatars

• You can only allow one key stroke at

a time, so you construct a string as

the player presses keys

HUD ELEMENTS

HUD ELEMENTS

• The HUD or Heads Up Display displays

pertinent information to a player for

each gameplay mode

• It is an overlay on top of the view of

the game

• Simple elements

• Buttons

• Score

• Health bars

WAYPOINT ARROW

• Store vector for facing direction 𝑓

• Compute vector to target 𝑡

• Angle of rotation

• 𝜃 = cos−1 𝑡 ⋅ 𝑓

• Axis of rotation

• 𝑎 = 𝑡 × 𝑓

• Rendering considerations

• Should not be affected by camera transformation

• Should not be affected by z-buffering

AIMING RETICULE

• Drawn as a crosshair at a set 2D

position

• Ray cast is performed into the scene

from the unprojected 2D position

• Depending on what the ray hits you

change the color/shape of the

reticule

RADAR

• Convert player and objects of

interest into 2D positions

• Determine distance and vector to

objects of interest

• Draw blip if inside view based on

target vector

N

OTHER CONSIDERATIONS

• Design in relative coordinates to

support multiple resolutions

• Remember to support localization

• Use middleware for the UI as much

as possible

• Design for user experience!

GPAT – CHAPTER 11 (NOT ASSIGNED IN READING)
SCRIPTING LANGUAGES AND DATA FORMAT

SCRIPTING LANGUAGES

• Allows designers to get involved in the

programming

• Abstract the engine (hard stuff) from the game

elements ("easier" stuff)

• Use a scripting language that is

interpreted/compiled by the engine

• Allows easy updates to the game to be

distributed

• Can reload script dynamically for debugging

• Prevents crashes

• However, can be slow

IMPLEMENTING A SCRIPTING LANGUAGE

Lexing

Parsing

Executing

• Tokenization (Lexical analysis) – make "tokens" out

of a stream of text. Typically done through regular

expressions.

• Operators

• Identifiers

• Keywords

• Etc

• Syntax analysis – ensure tokens follow rules of the

language. Typically done through context-free

grammars.

• Code execution/generation

DATA FORMATS

• Binary file – unreadable file that stores values of the bits

directly

• Efficient

• Needs some way to help debug/designers

• Text-based file – readable file that stores values of the

bits as strings

• Easy editing for designers and repositories

• Allows end users to modify (user mods)

• Can use standard options

• XML

• JSON

• Both – text-based in development and binary in release

DATA FORMATS

WORK ON DESIGNING YOUR MENU SYSTEM AND
HUD FOR YOUR PRIMARY GAMEPLAY MODES

SUMMARY

• In this chapter, we looked at some basic approaches to defining and

implementing a user interface for a game

• Menu systems

• HUD elements

