GPAT - CHAPTER 7 PHYSICS

PHYSICS OVERVIEW

- Physics in games involves these two basic elements:
- Object-object interaction (Geometry)
- Collision detection
- Collision response
- Mechanics (Calculus)
- Object movement
- Also can be used to simulate
- Visual effects such as water dynamics
- More realistic sound and light effects
- However, these are often too slow for gaming

COLLISION DETECTION

BASIC GEOMETRY

- Planes
- Point \vec{p}, normal \hat{n}
- $\vec{p} \cdot \hat{n}+d=0$
- Easy to derive from triangle
- Rays
- Point $\overrightarrow{R_{0}}$, direction \vec{v}, parametric value $t \in[0, \infty)$
- $\overrightarrow{R_{0}}+\vec{v} t$
- Line segments
- Same as ray except $t \in[0,1]$ (i.e., two endpoints)
- A ray cast involves extending a ray into the scene to determine interaction with objects, e.g., ballistics in FPS games. Often computed by line segments and not actual rays

COLLISION GEOMETRIES

- A separate geometric representation of objects is used instead of the real mesh geometry for collision detection
- Compare a box (12 triangles) to a complex model for an avatar ($>15,000$ triangles)
- Leads to false positives

COLLISION GEOMETRIES

- Bounding Spheres (BSs)
- Center
- Radius
- Axis-Aligned Bounding Boxes (AABBs)
- Min/Max in each dimension (2 points)
- Oriented Bounding Boxes (OBBs)
- 8 vertices or 6 planes

COLLISION GEOMETRIES

- Capsules
- 2 points
- Radius
- Convex Polyhedrons (Convex Hulls)
- Mesh
- List of Geometries

BS-BS COLLISION DETECTION

- Collision if

$$
\|A-B\|^{2}<\left(r_{a}+r_{b}\right)^{2}
$$

AABB-AABB COLLISION DETECTION

- For 2D-boxes A and B:
A. $\max , x>B . \min , x \wedge$
B. $\max . x>A . \min . x \wedge$
A. $\max . y>B . \min . y \wedge$ B. $\max . y>$ A.min. Y

LINE SEGMENT-PLANE COLLISION DETECTION

- Given the two equations:

$$
\begin{aligned}
& \overrightarrow{R_{0}}+\vec{v} t \\
& \vec{p} \cdot \hat{n}+d=0
\end{aligned}
$$

- We solve for their intersection (a point on that plane):

$$
\begin{aligned}
& \left(\overrightarrow{R_{0}}+\vec{v} t\right) \cdot \hat{n}+d=0 \\
& \overrightarrow{R_{0}} \cdot \hat{n}+(\vec{v} \cdot \hat{n}) t+d=0 \\
& t=\frac{-\left(\overrightarrow{R_{0}} \cdot \hat{n}+d\right)}{\vec{v} \cdot \hat{n}}
\end{aligned}
$$

- If $t \in[0,1]$ then there is a collision, else
 non-collision
- Plug back in if you need the point

LINE SEGMENT-TRIANGLE COLLISION DETECTION

- First figure out the point hits the plane that the triangle lies in
- Next we determine if that point lies in the triangle
- Key idea is to determine if the point is on the same side of each edge of the triangle:

$$
(\overrightarrow{A B} \times \overrightarrow{A P}) \cdot \hat{n}>0
$$

- Can be more efficient with Barycentric coordinates

BS-PLANE COLLISION DETECTION

- Essentially, find a hypothetical plane parallel to the first plane and through the center of the sphere
- Compare the difference of the plane's d values to the spheres radius
- Intersection if:

$$
\begin{aligned}
& d_{B}=-B \cdot \hat{n} \\
& \left|d-d_{B}\right|<r_{b}
\end{aligned}
$$

SWEPT BS COLLISION DETECTION

- Essentially, a version of continuous collision detection (or collision detection for capsules)
- Again, construct parametric equations and solve
- Specifically, construct rays for the motion of the object centers and find the point where the distance between the rays is the same as the sum of the radii

SWEPT BS COLLISION DETECTION

- Center motion:

$$
\begin{aligned}
& \overrightarrow{A_{\mathrm{t}}}=\overrightarrow{A_{0}}+\overrightarrow{v_{A}} t \\
& \overrightarrow{B_{\mathrm{t}}}=\overrightarrow{B_{0}}+\overrightarrow{v_{B}} t
\end{aligned}
$$

- Solve for t in:

$$
\left\|\overrightarrow{A_{t}}-\overrightarrow{B_{t}}\right\|=r_{A}+r_{B}
$$

$$
\left(\overrightarrow{A_{t}}-\overrightarrow{B_{t}}\right) \cdot\left(\overrightarrow{A_{t}}-\overrightarrow{B_{t}}\right)=\left(r_{A}+r_{B}\right)^{2}
$$

SWEPT BS COLLISION DETECTION

- $\left(\overrightarrow{A_{t}}-\overrightarrow{B_{t}}\right) \cdot\left(\overrightarrow{A_{t}}-\overrightarrow{B_{t}}\right)=\left(r_{A}+r_{B}\right)^{2}$
- Looking at $\overrightarrow{A_{t}}-\overrightarrow{B_{t}}$:

$$
\begin{aligned}
& \overrightarrow{A_{0}}+\overrightarrow{v_{A}} t-\overrightarrow{B_{0}}-\overrightarrow{v_{B}} t \\
& \overrightarrow{A_{0}}-\overrightarrow{B_{0}}+\left(\overrightarrow{v_{A}}-\overrightarrow{v_{B}}\right) t
\end{aligned}
$$

- Let $\vec{C}=\overrightarrow{A_{0}}-\overrightarrow{B_{0}}, \vec{D}=\overrightarrow{v_{A}}-\overrightarrow{v_{B}}$ so:

$$
(\vec{C}+\vec{D} t) \cdot(\vec{C}+\vec{D} t)=\left(r_{A}+r_{B}\right)^{2}
$$

SWEPT BS COLLISION DETECTION

- Expanding the dot product:

$$
\vec{C} \cdot \vec{C}+2(\vec{C} \cdot \vec{D}) t+(\vec{D} \cdot \vec{D}) t^{2}=\left(r_{A}+r_{B}\right)^{2}
$$

- Let $a=\vec{D} \cdot \vec{D}, b=\vec{C} \cdot \vec{D}$,

$$
\begin{aligned}
c=\vec{C} \cdot \vec{C}-\left(r_{A}+r_{B}\right)^{2}, \text { so: } \\
a t^{2}+b t+c=0
\end{aligned}
$$

- Solve with quadratic equation, and if the discriminant is greater than 0 and further $t \in[0,1]$, then there is a collision. Otherwise no collision (or tangent)

COLLISION RESPONSE

- Simple examples
- Objects "die"
- One object loses health
- Complex interactions
- Need to determine exact point of collision (LERP)
- Need to determine normals at point of collision
- Reflect and scale velocities about normals depending on elasticity of collision

OPTIMIZING COLLISION DETECTION

Raster

Quadtree

- Often use a hierarchy of collision geometries (e.g., sphere/box then convex hull)
- Use of spatial trees, e.g., quadtree to limit which objects collision is performed against (~logarithmic time and \sim constant number of triangles to collision check)

PHYSICS-BASED MOVEMENT

REVIEW OF LINEAR (NEWTONIAN) MECHANICS

- Newton's second law of motion - force is mass by acceleration

$$
\vec{F}=m \vec{a}
$$

- For position \vec{x} :
- Velocity $\vec{v}=\dot{\vec{x}}$ (first derivative with respect to time)
- Acceleration $\vec{a}=\dot{\vec{v}}=\ddot{\vec{x}}$ (second derivative with respect to time)
- In games however, we are trying to compute the next time steps position \vec{x}^{\prime}, thus, we need the anti-derivative, i.e., integration
- Further we need to use numerical integration, after all we don't even have a symbolic representation of our motion
- Essentially cannot use variable time step
- Accuracy is related to the magnitude of the time step
- Begin by calculating the force, e.g., gravity, wind resistance, impulses, etc
- Next compute acceleration

$$
\vec{a}=\frac{\vec{F}}{m}
$$

EULER AND SEMI-IMPLICIT EULER INTEGRATION

- Euler integration - use current velocity to alter position

$$
\begin{aligned}
& \vec{x}^{\prime}=\vec{x}+\vec{v} \Delta t \\
& \vec{v}^{\prime}=\vec{v}+\vec{a} \Delta t
\end{aligned}
$$

- Semi-implicit Euler integration - use next velocity to alter position

$$
\begin{aligned}
& \vec{v}^{\prime}=\vec{v}+\vec{a} \Delta \mathrm{t} \\
& \vec{x}^{\prime}=\vec{x}+\vec{v}^{\prime} \Delta \mathrm{t}
\end{aligned}
$$

continuous
signal (dotted)
$y[n-1]$
integrated sample step

ADVANCED CONSIDERATIONS

- Can use Velocity Verlet integration (essentially the trapezoid rule)
- Could use Taylor series expansions, e.g., Fourth Order Runge-Kutta
- All about how much error you can handle
- For angular considerations - torque is moment of inertia by angular accelaration

$$
\vec{\tau}=I \vec{\alpha}
$$

then use integration to get angular velocity $\vec{\omega}$ and angle \vec{q}

- Complicated as moment of interia is a matrix
- Typically utilize existing libraries
- PhysX
- Bullet
- etc

SUMMARY

- In this chapter we delved into the basics elements of emulating physics
- Collision detection
- Collision response
- Physics-based movement through numerical integration

