
GPAT – CHAPTER 7
PHYSICS

PHYSICS OVERVIEW

• Physics in games involves these two

basic elements:

• Object-object interaction (Geometry)

• Collision detection

• Collision response

• Mechanics (Calculus)

• Object movement

• Also can be used to simulate

• Visual effects such as water dynamics

• More realistic sound and light effects

• However, these are often too slow for

gaming

COLLISION DETECTION

BASIC GEOMETRY

• Planes

• Point 𝑝, normal 𝑛

• 𝑝 ⋅ 𝑛 + 𝑑 = 0

• Easy to derive from triangle

• Rays

• Point 𝑅0, direction 𝑣, parametric value 𝑡 ∈ 0,∞

• 𝑅0 + 𝑣𝑡

• Line segments

• Same as ray except 𝑡 ∈ 0,1 (i.e., two endpoints)

• A ray cast involves extending a ray into the scene

to determine interaction with objects, e.g., ballistics

in FPS games. Often computed by line segments

and not actual rays

 𝑛

A B

C

𝑅0 𝑣

𝑅0 𝑅1

COLLISION GEOMETRIES

• A separate geometric

representation of objects is used

instead of the real mesh geometry

for collision detection

• Compare a box (12 triangles) to a

complex model for an avatar

(>15,000 triangles)

• Leads to false positives

COLLISION GEOMETRIES

• Bounding Spheres (BSs)

• Center

• Radius

• Axis-Aligned Bounding Boxes

(AABBs)

• Min/Max in each dimension (2 points)

• Oriented Bounding Boxes (OBBs)

• 8 vertices or 6 planes

COLLISION GEOMETRIES

• Capsules

• 2 points

• Radius

• Convex Polyhedrons (Convex Hulls)

• Mesh

• List of Geometries

BS-BS COLLISION DETECTION

• Collision if

𝐴 − 𝐵 2 < 𝑟𝑎 + 𝑟𝑏
2

A

𝑟𝑎

𝑟𝑏

B

𝑟𝑏

B

A

𝑟𝑎

𝑟𝑏

B

𝑟𝑏

B

Collision

Non-collision

AABB-AABB COLLISION DETECTION

• For 2D-boxes A and B:

𝐴.𝑚𝑎𝑥. 𝑥 > 𝐵.𝑚𝑖𝑛. 𝑥 ∧

𝐵.𝑚𝑎𝑥. 𝑥 > 𝐴.𝑚𝑖𝑛. 𝑥 ∧

𝐴.𝑚𝑎𝑥. 𝑦 > 𝐵.𝑚𝑖𝑛. 𝑦 ∧

𝐵.𝑚𝑎𝑥. 𝑦 > 𝐴.𝑚𝑖𝑛. 𝑌

𝐴.𝑚𝑖𝑛

𝐴.𝑚𝑎𝑥

𝐴
𝐵

𝐵.𝑚𝑖𝑛

𝐵.𝑚𝑎𝑥

𝐴.𝑚𝑖𝑛

𝐴.𝑚𝑎𝑥

𝐴

𝐵

𝐵.𝑚𝑖𝑛

𝐵.𝑚𝑎𝑥

Collision

Non-collision

LINE SEGMENT-PLANE COLLISION DETECTION

• Given the two equations:

𝑅0 + 𝑣𝑡
 𝑝 ⋅ 𝑛 + 𝑑 = 0

• We solve for their intersection (a point

on that plane):

𝑅0 + 𝑣𝑡 ⋅ 𝑛 + 𝑑 = 0

𝑅0 ⋅ 𝑛 + 𝑣 ⋅ 𝑛 𝑡 + 𝑑 = 0

𝑡 =
− 𝑅0 ⋅ 𝑛 + 𝑑

 𝑣 ⋅ 𝑛

• If 𝑡 ∈ 0,1 then there is a collision, else

non-collision

• Plug back in if you need the point

 𝑛

 𝑝

𝑅0

 𝑣

LINE SEGMENT-TRIANGLE COLLISION DETECTION

• First figure out the point hits the plane

that the triangle lies in

• Next we determine if that point lies in

the triangle

• Key idea is to determine if the point is

on the same side of each edge of the

triangle:

𝐴𝐵 × 𝐴𝑃 ⋅ 𝑛 > 0

• Can be more efficient with Barycentric

coordinates

A C

B

P

BS-PLANE COLLISION DETECTION

• Essentially, find a hypothetical plane

parallel to the first plane and

through the center of the sphere

• Compare the difference of the

plane's 𝑑 values to the spheres

radius

• Intersection if:

𝑑𝐵 = −𝐵 ⋅ 𝑛

𝑑 − 𝑑𝐵 < 𝑟𝑏

 𝑛

 𝑝

𝑟𝑏

B

Non-collision

𝑂

𝑑𝐵 𝑑

SWEPT BS COLLISION DETECTION

• Essentially, a version of continuous

collision detection (or collision detection for

capsules)

• Again, construct parametric equations and

solve

• Specifically, construct rays for the motion of

the object centers and find the point where

the distance between the rays is the same

as the sum of the radii

𝑡 = 1

𝑡 = 0
𝑡 = 1

𝑡 = 0

A

A

B

B

SWEPT BS COLLISION DETECTION

• Center motion:

𝐴t = 𝐴0 + 𝑣𝐴𝑡

𝐵t = 𝐵0 + 𝑣𝐵𝑡

• Solve for 𝑡 in:

𝐴𝑡 − 𝐵𝑡 = 𝑟𝐴 + 𝑟𝐵

𝐴𝑡 − 𝐵𝑡 ⋅ 𝐴𝑡 − 𝐵𝑡 = 𝑟𝐴 + 𝑟𝐵
2

𝑡 = 1

𝑡 = 0
𝑡 = 1

𝑡 = 0

A

A

B

B

SWEPT BS COLLISION DETECTION

• 𝐴𝑡 − 𝐵𝑡 ⋅ 𝐴𝑡 − 𝐵𝑡 = 𝑟𝐴 + 𝑟𝐵
2

• Looking at 𝐴𝑡 − 𝐵𝑡:

𝐴0 + 𝑣𝐴𝑡 − 𝐵0 − 𝑣𝐵𝑡

𝐴0 − 𝐵0 + 𝑣𝐴 − 𝑣𝐵 𝑡

• Let 𝐶 = 𝐴0 − 𝐵0, 𝐷 = 𝑣𝐴 − 𝑣𝐵 so:

 𝐶 + 𝐷𝑡 ⋅ 𝐶 + 𝐷𝑡 = 𝑟𝐴 + 𝑟𝐵
2

𝑡 = 1

𝑡 = 0
𝑡 = 1

𝑡 = 0

A

A

B

B

SWEPT BS COLLISION DETECTION

• Expanding the dot product:

 𝐶 ⋅ 𝐶 + 2 𝐶 ⋅ 𝐷 𝑡 + 𝐷 ⋅ 𝐷 𝑡2 = 𝑟𝐴 + 𝑟𝐵
2

• Let 𝑎 = 𝐷 ⋅ 𝐷, 𝑏 = 𝐶 ⋅ 𝐷,

𝑐 = 𝐶 ⋅ 𝐶 − 𝑟𝐴 + 𝑟𝐵
2, so:

𝑎𝑡2 + 𝑏𝑡 + 𝑐 = 0

• Solve with quadratic equation, and if the

discriminant is greater than 0 and further

𝑡 ∈ 0,1 , then there is a collision.

Otherwise no collision (or tangent)

𝑡 = 1

𝑡 = 0
𝑡 = 1

𝑡 = 0

A

A

B

B

COLLISION RESPONSE

• Simple examples

• Objects "die"

• One object loses health

• Complex interactions

• Need to determine exact point of

collision (LERP)

• Need to determine normals at point of

collision

• Reflect and scale velocities about normals

depending on elasticity of collision

A

B

A

B

OPTIMIZING COLLISION DETECTION

• Often use a hierarchy of collision

geometries (e.g., sphere/box then

convex hull)

• Use of spatial trees, e.g., quadtree

to limit which objects collision is

performed against (~logarithmic

time and ~constant number of

triangles to collision check)

PHYSICS-BASED MOVEMENT

REVIEW OF LINEAR (NEWTONIAN) MECHANICS

• Newton's second law of motion – force is

mass by acceleration

 𝐹 = 𝑚 𝑎

• For position 𝑥:

• Velocity 𝑣 = 𝑥 (first derivative with respect to

time)

• Acceleration 𝑎 = 𝑣 = 𝑥 (second derivative

with respect to time)

• In games however, we are trying to compute

the next time steps position 𝑥′, thus, we

need the anti-derivative, i.e., integration

• Further we need to use numerical

integration, after all we don't even have a

symbolic representation of our motion

• Essentially cannot use variable time step

• Accuracy is related to the magnitude of the

time step

• Begin by calculating the force, e.g., gravity,

wind resistance, impulses, etc

• Next compute acceleration

 𝑎 =
 𝐹

𝑚

EULER AND SEMI-IMPLICIT EULER INTEGRATION

• Euler integration – use current

velocity to alter position

 𝑥′ = 𝑥 + 𝑣Δt

 𝑣′ = 𝑣 + 𝑎Δt

• Semi-implicit Euler integration – use

next velocity to alter position

 𝑣′ = 𝑣 + 𝑎Δt

 𝑥′ = 𝑥 + 𝑣′Δt

ADVANCED CONSIDERATIONS

• Can use Velocity Verlet integration

(essentially the trapezoid rule)

• Could use Taylor series expansions, e.g.,

Fourth Order Runge-Kutta

• All about how much error you can handle

• For angular considerations – torque is

moment of inertia by angular accelaration

 𝜏 = 𝐼 𝛼

then use integration to get angular velocity

𝜔 and angle 𝑞

• Complicated as moment of interia is a matrix

• Typically utilize existing libraries

• PhysX

• Bullet

• etc

SUMMARY

• In this chapter we delved into the basics elements of emulating physics

• Collision detection

• Collision response

• Physics-based movement through numerical integration

