
GPAT – CHAPTER 5 AND 6
INPUT AND SOUND



INPUT



INPUT DEVICES

• Digital input is binary (on or off)

• Button on controller

• Key on keyboard

• Analog input has a range of values

• Joystick

• Trigger

• Games often need to deal with

• Chords – multiple simultaneous inputs

• Sequences – series of inputs



DIGITAL INPUT

• Essentially simple Boolean checks

if isPressed(INPUT) then

changeGameState()

• INPUT is often referred to as a keycode

(from keyboard lingo)

• Problem is that this might register over 

multiple frames

• How can you deal with and program 

this?

• Separate push and release actions and 

respond on state changes

• Switch! Why not if/else?



ANALOG INPUT

• Often represented as a multi-bit 

integer, e.g., 16 bit (-32768 –

32767)

• Need to deal with error in input 

device

• Example – a joystick at rest might not 

have a value of 0, but a value close to 

0



ANALOG INPUT

• To deal with error implement analog 

filtering

• Example – implementing dead zone (do 

nothing) around center of joystick

• Simple range check with conditional

• Be sure to use length and not raw 𝑥 and 

𝑦 values. Why?

• After dead zone, renormalize range of 

valid input. Why?

Dead 

Zone

0%
100%



EVENT SYSTEMS



EVENT SYSTEMS

• Prior, we looked at a polling system 

where we checked each frame the state 

of input

• Event systems essentially are a push

notification system. In these, we 

"register" to an event notification 

• Registration literally links a method (often 

called a callback, handler, or slot) to an 

event (often called a signal)

• The underlying event system must still 

implement itself through polling! However, 

it is encapsulated in the event handler 

(good OOP design!)



A BASIC EVENT SYSTEM

• For starters, if you were never aware:

• functions (and methods) are literally 

stored in memory (where?)

• Also can use function objects

• We can have variables refer to them 

called function/method pointers 

(examples?)

• In event manage class store list of 

methods registered to an event

• Provide a method to register handlers

• Update will:

• Poll

• On event, invoke each method registered

• Example of mouse click event

• // Accept function with 

// specific signature

register(function handler(int, int))

callbacks.add(handler)

• processInput()

if mouseClicked then

for each Callback c ∈ callbacks do

c(mouseX, mouseY)

• Implement manager class with singleton pattern

• A class designed for and accessed through a single instance



A MORE COMPLEX EVENT SYSTEM

Input 
update

Active 
binding 

list
UI Game

• Generalize from a specific button or 

keypress to an abstract action

• Actions are methods bound to an event 

(called a binding, i.e., a registered 

action)

• To process input, poll the system to 

gather the active bindings. After, send 

list of active bindings to UI first and 

then to the game state

• How should we store the bindings and 

active bindings?

• Why do we send to the UI first?



A PLACE FOR MULTI-THREADING

• Often event-based systems are multi-

threaded

• One thread for the event management

• All polled events go onto an event queue

• One thread for handling the events

• Process all events currently on the queue (or all 

within a limited time)

• This has an advantage that input can be 

captured live, i.e., when a player performs the 

input

• Often at the OS level at least

Event 
management 
thread

Main thread 
to handle 
events



MOBILE INPUT



TOUCH SCREENS AND GESTURES

• Player interacts with finger (similar to mouse 

clicking)

• Complicated by multi-touch (multiple finger 

input) and gestures (series of touch actions)

• Many gestures are readily available 

through libraries, however you can often 

design your own

• Analyze gestures using the Rubine algorithm 

which analyzes and matches features of a 

gesture



OTHER INPUT

• An accelerometer detects 

acceleration along the coordinate 

space represented by the device 

with itself at the origin

• A gyroscope measures rotation 

around the devices principle axes



SOUND



BASIC SOUND

• Games need to playback standalone 

sound files

• There is a limited number of channels or 

simultaneous sounds that can be played 

at a time

• Source data

• Audio files

• Stored in or streamed from local memory 

to the sound card

• Data transferred from CPU memory to 

sound card memory through memory 

buffers



BASIC SOUND

• Sound cues indicate an action or trigger 

for a sound, called a sound event

• Often multiple sounds are associated with 

each cue to provide variety

• Randomized

• Location-based

• Meta-data about the sound

• Manager would be vary similar to an 

event-based system



2D VS 3D SOUND

• 2D sound is typically positionless sounds 

that play equally out of left and right 

speakers

• Example: background music or UI sounds

• 3D sound takes into account position 

and orientation of a listener and 

multiple sound emitters

• Volume of sound is determined based on 

distance between them (falloff)



LISTENER

• Need to be careful on position and 

orientation of listener

• Could choose camera position and 

orientation, e.g., first-person views

• Might be better to choose a position 

other than a player avatar, e.g., in 

third-person



SURROUND SOUND

• With 3D sound you have an 

additional difficulty of deciding 

volume of sounds presented to each 

speaker (left vs right)

• What about surround sound, should 

you design for it? Pros/cons?



SOUND PROCESSING

• Digital signal processing is the 

computational manipulation of sound

• Example: reverb or echoing

• Example: pitch shift – alters sound 

frequency

• Example: compression – volume 

modification to normalize sounds

• Example: low-pass filter – reduces 

volume of high pitch sounds



SOUND PROCESSING

• Can provide local modifications 

based on location in virtual world

• Will discuss more geometry in Ch. 7 

with physics



DOPPLER EFFECT

• Pitch increases on approaching 

sounds

• Pitch decreases on receding sounds

• Caused by variation on time taken 

for sound waves to travel

• Can also be applied to lighting in 

games (e.g., outerspace settings)



OCCLUSION AND OBSTRUCTION

• One difficulty with sound is that it reflects 

off of obstacles and refracts through them

• Computationally intensive to mimic physics

• Two considerations that can often be 

managed

• Occlusion occurs when there is not a direct 

path from listener to emitter

• Obstructions occurs when sound might not 

have a straight-line path

• Can use Fresnel Acoustic Diffraction to 

compute



SUMMARY

• Event systems manage matching input actions to callback functions

• Sound is complex and involves many design decisions

• Libraries make programming with it much simpler


