
GPAT – CHAPTER 2, 4, AND 8
GRAPHICS AND CAMERAS

SOME BASICS OF GRAPHICS

• A pixel is a picture element whose data

is typically at least a color (but can be

more, e.g., depth information)

• The framebuffer is special location in

memory of pixel data for the monitor to

display

• Monitor technology (e.g., CRT) used to

be built upon the concept of a scan

line, i.e., a row of pixels, and many

algorithms still rely on this.

Cathode Ray Tube

Monitor

SOME BASICS OF GRAPHICS

• Colors are usually expressed in Red-

Green-Blue (RGB) format

• 3 8-bit integers (each a value 0-255) or

3 floating-point numbers (each a value

0-1) representing intensity. 0 is no

intensity or black

• Often colors add in an alpha channel

representing transparency. 0 is fully

transparent. 255u or 1.f is fully

opaque.

SOME BASICS OF GRAPHICS

• Modern computers and consoles have

graphics processing units (GPUs)

• Knows how to render points, lines, and

triangles

• Has dedicated memory

• Executes shaders, or small programs, to

operate on data

• Operates on 4-byte floating point

numbers

• Things to keep in mind:

• Geometry data lives on GPU, not CPU –

data transfer occurs through memory

buffers

• Picture information, often called a

texture, also lives in GPU memory – also

called a color map

• GPUs are highly parallel, CPUs are not

• GPUs have limited memory that must be

managed properly

DOUBLE BUFFERING

THERE IS A PROBLEM THOUGH!

• What happens when the CPU

changes the framebuffer while the

monitor is drawing it?

• Screen tearing or showing two

partial frames at once

SOLUTION – VSYNC

• Synchronize the game loop

rendering with the interval that the

scanner is returning to the original

position, called vertical blank

interval

• Problem?

• Still not enough time!

Monitor

Vertical Blank Interval

(VBLANK)

SOLUTION – DOUBLE BUFFERING

• Have two frame buffers

• Render to the back buffer

• Display the front buffer

• At the end of the game loop rendering

• Wait for VBLANK

• Swap frame buffers

Back buffer
(Render)

Front buffer
(Display)

Swap Buffers

SPRITES

DRAWING SPRITES

• A sprite is a 2D visual game object that can

be drawn with a single image

• Examples – characters, objects, backgrounds

• 2D games have dozens to hundreds of

sprites to manage as texture objects (its

these game assets that make them large)

• How should we draw them?

• Draw in order of background to

foreground, called the painter's algorithm

• Give each sprite an integral "draw order"

• Some libraries break further into layers, and

each layer is drawn based on draw order

• How do you store all of the sprites?

• Sorted container

• Update step should set draw order and re-

sort container

class Sprite {

ImageFile image

int drawOrder

int x, y

void draw() {

// Draw image at correct

// (x, y)

}

}

ANIMATING SPRITES

• Based on "flipbook" animation

• Show series of images fast enough

• Store an array of sprite images in order of animation

struct AnimFrameData {

int startFrame; // Starting index for animation

int numFrames; // Number of frames in animation

}

struct AnimData {

ImageFile images[]; // All sprites for animations

AnimFrameData frameInfo[]; // Animation information

}

ANIMATING SPRITES

class AnimSprite extends Sprite {

AnimData animData; // All animation data

int animNum; // Active animation

int frameNum; // Frame of active animation

float frameTime; // Amount of time current frame has been displayed

float animFPS; // FPS of animation

void initialize(); // Create/set animData and

// starting animation

void updateAnim(float deltaTime); // Update based on delta game time

void changeAnim(int num); // Resets frameNum and frameTime to

// 0 and sets image to first of

// animation num

}

ANIMATING SPRITES

void updateAnim(float deltaTime) {

frameTime += deltaTime;

// Check to advance to next animation frame

if(framTime > 1/animFPS) {

// Advance (frameTime / (1/animFPS)) frames

frameNum += frameTime * animFPS;

// Wrap animation

frameNum %= animData.frameInfo[animNum].numFrames;

// Update image and frameTime

int imageNum = animData.frameInfo[animNum].startFrame + frameNum;

image = animData.images[imageNum]

frameTime %= 1/animFPS;

}

}

HOW DO YOU SWITCH BETWEEN ANIMATIONS?

• Use a state machine

• More on this when covering AI

• Essentially, a graph

• Nodes are specific animations (pick one

to start on)

• Edges represent transitions

• Automatic (e.g., after 3 seconds)

• Action (e.g., after pushing 'A')

SPRITE SHEETS

• Efficient file representation for

sprites. Put them all in a single

texture (packed closely)

SCROLLING

SINGLE-AXIS SCROLLING

• Assume we have a finite set of

images, all screen-sized segments

(e.g., 960x640) scrolling on x-axis

• Initialize ith image x at

imageIndex*screenWidth

• 1st image at 0, 2nd at 960, 3rd at 1920,

…

• How many backgrounds should be

drawn at a time?

• 2

• Need x, y coordinates of "camera"

• Starts at center of first screen

• Lets have camera x be the players x,

except cannot go behind first

image/past last image

SINGLE-AXIS SCROLLING

camera.x = clamp(player.x, screenWidth/2,

imageCount * screenWidth – screenWidth/2);

Find image i camera is in by camera.x/screenWidth;

Draw image i at (i.x – camera.x + screenWidth/2, 0);

Draw image (i+1) at (i.x – camera.x + screenWidth/2, 0);

SCROLLING EXTRAS

• Infinite scrolling can be implemented by looping through images (wrapping) or

randomly piecing image sequences together

• Parallax scrolling breaks background into multiple layers at different depths

• Typically need at least 3 layers

• Implemented by drawing image i at

(i.x – (camera.x – screenWidth/2) * speedFactor, 0)

• Note need different find equation

• Four-way scrolling

• Incorporate the y-axis too

• Have matrix of background images

• How many images should be drawn?

• 4

TILE MAPS

CREATING WORLDS WITH TILE MAPS

• Tile maps are a partitioning of the

world into polygons of equal size

(e.g., squares, parallelograms, or

hexagons)

• Each tile represents a sprite as a

numeric lookup into the tile set

SIMPLE TILE MAPS (GRID)

• Step 1: determine size of tiles

• Step 2: think of a file format to

design tile maps

• 5,5

0 0 1 0 0

0 1 1 1 0

1 1 2 1 1

0 1 1 1 0

0 0 1 0 0

• Step 3: class representation

• class Level {

const int tileSize = 32;

int width, height;

int tiles[][];

void draw() {

for(int[] row : tiles)

for(int tile : row)

// Draw tile at

// (col*tileSize, row*tileSize)

}

}

ISOMETRIC TILE MAPS

• Use diamonds or hexagons

• Can utilize multiple layers

• Higher levels have more

complex/larger structures

• Complex, but you can definitely

figure them out! Get creative!

3D VIEWING PIPELINE

DEFINING MODELS

• Models are polygonal meshes

• Vertex data

• Position

• Normal

• Texture coordinate

• Etc

• Face data (triangles)

VIEWING PIPELINE

y

z

x

Model Coordinates

y

z

x

World Coordinates Camera Coordinates

Device CoordinatesProjection Coordinates

(Homogeneous)

MODEL SPACE

• Origin is typically the center of mass

of the object, or a vertex

• Humanoids might have the origin at the

feet

y

z

x

Model Coordinates

WORLD SPACE

• Origin is a special point in the space

• Models are transformed into this virtual

scene

• Scaled

• Rotated

• Translated

• Homogeneous coordinates – use 4D

vectors with the 4th component usually 0

(direction) or 1 (point)

y

z

x

World Coordinates

WORLD SPACE

• Points get transformed by a series of

matrix manipulations

𝑝′ ← 𝑀𝑝

• Translation

𝑀 = 𝑇 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 =

1 0 0 𝑡𝑥
0
0
0

1
0
0

0
1
0

𝑡𝑦
𝑡𝑧
1

• Scale

𝑀 = 𝑆 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 =

𝑠𝑥 0 0 0
0
0
0

𝑠𝑦
0
0

0
𝑠𝑧
0

0
0
1

• Rotation

𝑀 = 𝑅𝑥 𝜃

=

1 0 0 0
0
0
0

cos 𝜃
sin 𝜃

0

−sin 𝜃
cos 𝜃

0

0
0
0

𝑀 = 𝑅𝑦 𝜃

𝑀 = 𝑅𝑧 𝜃

WORD SPACE

• Homogeneous coordinates allow for

translation to be a matrix transformation

• Imagine the various transforms to see how

they work, for example

𝑝′ ← 𝑇 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 𝑝 =

1 0 0 𝑡𝑥
0
0
0

1
0
0

0
1
0

𝑡𝑦
𝑡𝑧
1

𝑝𝑥

𝑝𝑦

𝑝𝑧

1
=?

• To apply multiple transformations

𝑀 = 𝑊 = 𝑇𝑅𝑧𝑅𝑦𝑅𝑥𝑆

• Why is rotation and scale performed

before translation?

CAMERA SPACE

• Origin is now the camera

• Axes are defined by the direction the

camera faces

• Camera definition

• Eye – world position of camera

• At – unit vector of camera −𝑧-axis

• Up – unit vector of camera 𝑦-axis

• Transformation matrix computed an applied

to all objects (look-at matrix)

Camera Coordinates

PROJECTION SPACE

• Many projection options (always

converts scene to homogeneous cube)

• Orthographic projection – parallel lines

stay parallel and object size is not

relative to distance from camera

• Perspective projection – parallel lines

converge and object size is relative to

distance from camera

• Defined by field of view and aspect

ratio

Near plane Far plane

-at

Projection Coordinates

(Homogeneous)

PROJECTION SPACE

• Objects outside of homogeneous cube

are clipped from the scene (performed

efficiently on GPU)

• Near plane is closest visible z-coordinate

to camera

• Far plane is farthest visible z-coordinate

to camera

• Again transformation performed by a

transformation matrix

Projection Coordinates

(Homogeneous)

Near plane Far plane

-at 𝜃

DEVICE SPACE

• Coordinates are transformed (by

another matrix computation) to

viewport coordinates (essentially x,

y screen positions)

• For efficiency, as many matrices as

possible are multiplied together

before being applied to objects

• Why?

• Which matrices can be collapsed?

Device Coordinates

LIGHTING

TEXTURE MAPPING
(NOT LIGHTING)

• Gives an object its base color

• Each vertex has a texture

coordinate which refers to a

location in a texture

• Texture coordinates are always in

0,1 2 and are not pixel coordinates

• Also called UV coordinates

LIGHTS

• Many types of lights, we will look at

most basic ones

• Ambient light – uniform amount of

lighting in a space

• Directional light – light without a position

that affects entire scene, e.g., sun (single

directional light per scene usually)

• Point light – light with a position emitting

light in all directions, e.g., lightbulb

• Spotlight – light with position and

direction, e.g., flashlight

PHONG REFLECTION MODEL

• Local lighting model – no secondary light reflections, i.e., object lighting is not

affected by other objects

• Ambient light – base illumination from scene

• Diffuse light – primary reflection of light that is evenly scattered

• Specular light – shiny reflections of light based on viewing direction

SHADING

• Shading is the determination of how the surface of a triangle is filled in, with respect

to the lighting model

• Flat shading – Uses face normal to compute light model one time and applies that color uniformly

• Gouraud shading – light model computed for each vertex and color is interpolated

• Phong shading – Vertex normal interpolated and light model computed for every pixel

VISIBILITY

BACK-FACE CULLING

• Remove triangles from rendering

which do not face the camera

• Performed by analyzing dot product

of face normal with camera at

vector, if negative then do not

render

PAINTER'S ALGORITHM (AGAIN)

• Draw items in background to

foreground

• Any issues?

• Order ill specified

• Required resorting each frame

• Overdraw (recomputing pixel color

over and over again)

Z-BUFFERING

• The z-buffer is additional memory

(in frame buffer) that stores depth

(distance from camera) information

of pixel

• During rendering, we only update a

pixel's color if a pixel is closer than

currently stored in the z-buffer

• Any issues?

• Floating-point error

• Transparency?

• To handle transparency

• Draw all opaque objects

• Make z-buffer read only

• Draw all transparent objects

• Note – professional game engines

employ many more techniques for

efficient visibility determination

WORLD TRANSFORM, REVISITED

REPRESENTING ROTATIONS

• Euler angles

• 3 separate angles (essentially as

discussed)

• Difficult to interpolate

• Gimbal lock

• Rotation matrix

• 16 values

• Expensive to interpolate

REPRESENTING ROTATIONS

• Angle-axis

• More intuitive

• Store an axis of rotation and angle of

rotation

• Difficult to interpolate as is

REPRESENTING ROTATIONS

• Quaternions

• Alternative representation of angle-

axis

• Small storage – 4 values

• Smooth interpolation

• No gimbal lock

• What could be terrible about them?

• Most confusing mathematical concept

you may ever learn (unless you jump

into higher level math)

• Unintuitive!

• Tradeoff – will always need to convert

to rotation matrix to actually transform

object (but not really a negative)

QUATERNIONS

• "A 3D complex (real + imaginary) number"

• Useful in representing 3D rotations,

essentially, angle-axis rotations

• Representation

• Scalar value

• Vector component (imaginary component)

• In graphics, we will always have unit

quaternions (magnitude of 1)

• 𝑞 = 𝑞𝑠, 𝑞𝑣

• From angle-axis 𝜃, 𝑎

• 𝑞 = cos
𝜃

2
, 𝑎 sin

𝜃

2

• Libraries often provide convenient

construction mechanisms from Euler Angles

or Angle-axis rotations

• Mathematics has many useful operations

combined, e.g., multiplying (combines

rotations), conjugation (inverse), etc.

• Quaternion rotation applied to a point

𝑝′ = 𝑞−1𝑝𝑞

CAMERA MODELS

TYPES OF CAMERAS

• Fixed and non-player controlled cameras – same

position or scripted positions by designer

• First-person camera – gives perspective of the

player

• Need to worry about player model used in rendering

• Third-person camera – possibly an omniscient

perspective of the world

• Follow camera – limited view that follows player in

world

• Cutscene camera – designed with smooth

transitions using spline system

REVIEW OF CAMERAS AND PERSPECTIVE

• Cameras defined by eye position,

look-at direction, and up direction

• Perspective projection defined by

field of view (FOV), aspect ratio,

near plane and far plane

• Careful of the fisheye effect when the

FOV is too large

Camera Coordinates

Near plane Far plane

-at 𝜃

BASIC FOLLOW CAMERA

• 𝑐𝑒𝑦𝑒 = 𝑡𝑝𝑜𝑠 − 𝑡𝑓𝑤𝑑ℎ𝑑𝑖𝑠𝑡 + 𝑡𝑢𝑝𝑣𝑑𝑖𝑠𝑡

• 𝑐𝑎𝑡 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡𝑝𝑜𝑠 − 𝑐𝑒𝑦𝑒

• 𝑐𝑢𝑝 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑐𝑎𝑡 × 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡𝑢𝑝 × 𝑐𝑎𝑡

Horizontal Follow

Distance

Vertical Follow

Distance

up

at

Target

forward and

up

𝑡𝑝𝑜𝑠, 𝑡𝑓𝑤𝑑, 𝑡𝑢𝑝

Camera

𝑐𝑒𝑦𝑒, 𝑐𝑎𝑡, 𝑐𝑢𝑝

SPRING FOLLOW CAMERA

• Idea

• "Store" two camera positions – ideal

and actual

• Ideal camera computed from basic

follow model

• Actual is attached on a virtual spring to

the ideal, and initialized as the ideal

• Has a position and velocity

Ideal Actual

SPRING FOLLOW CAMERA

• 𝑥 = 𝑎𝑒𝑦𝑒 − 𝑖𝑒𝑦𝑒

• 𝑎 = −𝑘𝑥 − 𝑑𝑣

• 𝑎 is acceleration, 𝑘 ∈ 0,1 is spring

constant, 𝑑 ∈ 0,1 is damper constant

• 𝑣 = 𝑣 + 𝑎Δ𝑡

• 𝑐𝑒𝑦𝑒 = 𝑐𝑒𝑦𝑒 + 𝑣Δ𝑡

• Euler integration will be discussed more in

Ch. 7 (physics)

• Can apply methodology to the at/up

vectors as well

Ideal

𝑖𝑒𝑦𝑒, 𝑖𝑎𝑡, 𝑖𝑢𝑝

Actual

𝑐𝑒𝑦𝑒 , 𝑐𝑎𝑡, 𝑐𝑢𝑝, 𝑣

ORBIT CAMERA

• Determine camera position change based on change

in yaw and pitch

• Can use spherical coordinates instead

• 𝑞𝑦𝑎𝑤 = 𝑄𝐹𝑟𝑜𝑚𝐴𝐴 𝑤𝑢𝑝, 𝑦𝑎𝑤

• 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝑞𝑦𝑎𝑤

• 𝑐𝑢𝑝 = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑐𝑢𝑝, 𝑞𝑦𝑎𝑤

• 𝑙𝑒𝑓𝑡 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑐𝑢𝑝 × 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 −𝑜𝑓𝑓𝑠𝑒𝑡

• 𝑞𝑝𝑖𝑡𝑐ℎ = 𝑄𝐹𝑟𝑜𝑚𝐴𝐴 𝑙𝑒𝑓𝑡, 𝑝𝑖𝑡𝑐ℎ

• 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑜𝑓𝑓𝑠𝑒𝑡, 𝑞𝑝𝑖𝑡𝑐ℎ

• 𝑐𝑢𝑝 = 𝑟𝑜𝑡𝑎𝑡𝑒 𝑐𝑢𝑝, 𝑞𝑝𝑖𝑡𝑐ℎ

• 𝑐𝑒𝑦𝑒 = 𝑡𝑝𝑜𝑠 + 𝑜𝑓𝑓𝑠𝑒𝑡

• 𝑐𝑎𝑡 = 𝑡𝑝𝑜𝑠

Offset

Rotate about

world y-axis

(yaw)

Rotate about

camera left

(pitch)

FIRST-PERSON CAMERA

• Essentially same as orbit, except that

you rotate the target position

instead, so yaw and pitch are stored

instead of incrementally changed

• Eye has a vertical offset from player

position (ground level)

Target

offset

SPLINE CAMERA

• Smooth interpolation between reference

frames in parametric coordinates 𝑡 ∈ 0,1

• Example spline: Catmull-Rom spline

𝑝𝑡

=
1

2
((2𝑝1 + −𝑝0 + 𝑝2 𝑡

+ 2𝑝0 − 5𝑝1 + 4𝑝2 − 𝑝3 𝑡2𝑝0

𝑝1

𝑝2

𝑝3

ADDITIONAL CONSIDERATIONS

• Camera collision

• Place object in front of occluding object

• Make occluding object transparent

• Picking

• Click on object in 3D world

• Required unprojection of device

coordinate

SUMMARY

• Discussed 2D graphics tricks and provided an overview of 3D graphics

concerns

• Remember the 3D viewing pipeline

• Overviewed some basic mathematics of camera models

