
GPAT – CHAPTER 1
GAME PROGRAMMING 
OVERVIEW



BRIEF HISTORICAL REMARKS

CONSOLE FOCUSED



ATARI ERA (1977-1985)

• Very little RAM, slow processor 

speed

• All games created in assembly

• Solo programmers



NES AND SNES ERA (1985-1995)

• More powerful hardware, but not 

enough for C. However, developer 

kits were released to help 

debugging

• Small programmer teams (3-9)



PLAYSTATION/PLAYSTATION 2 ERA (1995-2005)

• More powerful hardware, single 

thread, single core

• Games written in C (assembly for 

performance critical sections)

• Early years 8-10 programmers, late 

years up to 15 programmers



XBOX 360, PS3, WII ERA (2005-2013)

• High definition support

• Advanced hardware support (multi-

threading, multi-core)

• C++ and more with developer kits, e.g., 

Unity

• Programmer teams scaled immensely

• Over 75 for Assassin's Creed Revelations, 

for example



XBOX ONE, PS4, WII SWITCH, AND BEYOND

• More cores, more memory, 4K 

resolution, and on

• Larger and larger teams

• More independent titles

• Seeing resurgence of solo/small 

programmer teams



THE GAME LOOP



TRADITIONAL GAME LOOP

1. while gameIsRunning() do

2. // Process inputs

3. // Update game world

4. // Generate outputs

• Processing inputs requires detecting 

inputs from keyboard, mouse, 

controller, etc. Also includes 

communication over a network

• Generating outputs includes 

rendering graphics, audio, force 

feedback, etc.



EXAMPLE GAME LOOP FOR PAC-MAN

1.while player.lives > 0 do

2. // Process inputs

3. JoyStickData j = getJSD()

4. // Update game world

5. player.update(j)

6. player.killOrDeath(ghosts)

7. ghosts.updateAI(player)

8. // pellets, etc

9. // Generate outputs

10. drawWorld()

11. updateAudio()



MULTI-THREADED GAME LOOPS

• More difficult to form to multi-core 

systems

• One such solution, separate 

rendering and delay by one frame

• Creates input lag

• Other issues?



TIME



REAL TIME VS GAME TIME

• Real time is the amount of time 

passed in the physical world

• Game time is the amount of time 

elapsed in the imaginary world

• Considerations:

• Pausing the game?

• "bullet-time" physics?

• Reverse time?

• Example: Prince of Persia: The Sands 

of Time



LOGIC AS A FUNCTION OF DELTA TIME

• Early programming had a specific 

processor speed in mind, but once 

the processor speed was different 

the game would break

• Delta time is the amount of game 

time elapsed since the last frame

• Think and program in a frame-centric 

and game-centric notion



GAME LOOP WITH DELTA TIME

1. while gameIsRunning() do

2. realdt = lastt

3. gamedt = realdt * gametf

4. // Process inputs

5. // Update game world with gamedt

6. // Generate outputs

• Problems?

• Different behavior with different frame 

rates

• Online play?

• Solution – frame limiting, i.e., limit 

the frame rate



GAME LOOP WITH FRAME LIMITING

1. targetft = 0.17f

2. while gameIsRunning() do

3. realdt = lastt

4. gamedt = realdt * gametf

5. // Process inputs

6. // Update game world with gamedt

7. // Generate outputs

8. // Frame limiting

9. while framet < targetft do

10. doSomethingSmall()

• Problems?

• Dropping a frame



GAME OBJECTS



TYPES OF GAME OBJECTS

• A game object is anything in the 

game world that needs to be 

updated, drawn, or both in every 

frame

• Updateable and drawable

• Example – Mario (or any character)

• Drawable only

• Example – Brick (or any static object)

• Updatable only

• Example – Camera, hit box, location 

that starts an event (trigger)

• How would you implement?

• Interface for each + inheritance

• Class GameObject

• Interface Drawable

• Interface Updatable

• Classes for DrawableGameObject, 

UpdatableGameObject, 

DrawableUpdatableGameObject

• Class for GameWorld that contains lists of 

DrawableObjects and UpdatableObjects



GAME OBJECTS IN THE LOOP

1. targetft = 0.17f

2. while gameIsRunning() do

3. realdt = lastt

4. gamedt = realdt * gametf

5. // Process inputs

6. // Update game world

7. for Updatable o in GameWorld.updateableObjects do

8. o.update(gamedt)

9. // Gemerate outputs

10. for Drawable o in GameWorld.drawableObjects do

11. o.draw()

12. // Frame limiting

13. while framet < targetft do

14. doSomethingSmall()



SUMMARY

• Explored general frameworks surrounding game programming

• Need to remember to be frame-centric when developing a game


