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DEPTH-FIRST SEARCH

• Depth-first search (DFS) is a general 

technique for traversing a graph

• A DFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• DFS on a graph with 𝑛 vertices and 𝑚
edges takes 𝑂(𝑛 +𝑚) time

• DFS can be further extended to solve 

other graph problems

• Find and report a path between two 

given vertices

• Find a cycle in the graph

• Depth-first search is to graphs as what 

Euler tour is to binary trees



DFS ALGORITHM FROM A VERTEX

Algorithm DFS(𝐺, 𝑢)

Input: A graph 𝐺 and a vertex 𝑢 of 𝐺

Output: A collection of vertices reachable from 𝑢,

with their discovery edges

1. Mark 𝑢 as visited

2. for each edge 𝑒 = 𝑢, 𝑣 ∈ 𝐺.outgoingEdges(𝑢) do

3. if 𝑣 has not been visited then

4. Record 𝑒 as a discovery edge for 𝑣

5. DFS(𝐺, 𝑣)



EXAMPLE

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

𝐼(𝐴) = {𝑩, 𝐶, 𝐷, 𝐸}

𝐼(𝐵) = {𝑨, 𝐶, 𝐹}
𝐼(𝐵) = {𝐴, 𝑪, 𝐹}

𝐼(𝐶) = {𝑨, 𝐵, 𝐷, 𝐸}
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𝐼(𝐶) = {𝐴, 𝑩, 𝐷, 𝐸}
𝐼(𝐶) = {𝐴, 𝐵, 𝑫, 𝐸}



EXAMPLE

𝐼(𝐷) = {𝑨, 𝐶} 𝐼(𝐸) = {𝑨, 𝐶}

𝐼(𝐶) = {𝐴, 𝐵, 𝐷, 𝑬}𝐼(𝐶) = {𝐴, 𝐵,𝑫, 𝐸}

𝐼(𝐷) = {𝐴, 𝑪}
𝐼(𝐷) = {𝐴, 𝐶}

𝐼(𝐸) = {𝐴, 𝑪}
𝐼(𝐸) = {𝐴, 𝐶}
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EXAMPLE
𝐼(𝐶) = {𝐴, 𝐵, 𝐷, 𝐸}
𝐼(𝐵) = {𝐴, 𝐶, 𝑭}
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𝐼(𝐺) = ∅

𝐼(𝐹) = {𝐵}

𝐼(𝐵) = {𝐴, 𝐶, 𝐹}
𝐼(𝐴) = {𝐴, 𝐵, 𝐶, 𝐷}
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EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited

• Label edges as discovery or back edges
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DFS AND MAZE TRAVERSAL 

• The DFS algorithm is similar to a classic 

strategy for exploring a maze

• We mark each intersection, corner and 

dead end (vertex) visited

• We mark each corridor (edge) traversed

• We keep track of the path back to the 

entrance (start vertex) by means of a 

rope (recursion stack)



DFS ALGORITHM

• The algorithm uses a mechanism for setting and 

getting “labels” of vertices and edges

Algorithm DFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges of 𝐺
as discovery edges and back edges

1. for each 𝑣 ∈ 𝐺.vertices do

2. setLabel 𝑣, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each 𝑒 ∈ 𝐺.edges do

4. setLabel(𝑒, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺.vertices do

6. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

7. DFS(𝐺, 𝑣)

Algorithm DFS(𝐺, 𝑣)
Input: Graph 𝐺 and a start vertex 𝑣
Output: Labeling of the edges of 𝐺 in 

the connected component of 𝑣 as 

discovery edges and back edges

1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

3. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
4. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
5. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

6. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
7. DFS(𝐺, 𝑤)
8. else

9. setLabel(𝑒, 𝐵𝐴𝐶𝐾)



PROPERTIES OF DFS

• Property 1

• DFS(𝐺, 𝑣) visits all the vertices and 

edges in the connected component of 𝑣

• Property 2

• The discovery edges labeled by 

DFS(𝐺, 𝑣) form a spanning tree of the 

connected component of 𝑣
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ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes 𝑂(1) time

• Each vertex is labeled twice 

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝑉𝐼𝑆𝐼𝑇𝐸𝐷

• Each edge is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 or 𝐵𝐴𝐶𝐾

• Function DFS(𝐺, 𝑣) and the method outgoingEdges are called once for each vertex

• DFS runs in 𝑂(𝑛 +𝑚) time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚
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APPLICATION
PATH FINDING

• We can specialize the DFS algorithm to find a path 

between two given vertices 𝑢 and 𝑧 using the template 

method pattern

• We call DFS(𝐺, 𝑢) with 𝑢 as the start vertex

• We use a stack 𝑆 to keep track of the path between the 

start vertex and the current vertex

• As soon as destination vertex 𝑧 is encountered, we return 

the path as the contents of the stack 

Algorithm pathDFS(𝐺, 𝑣, 𝑧)
Input: Graph 𝐺, a start vertex 𝑣, 

a goal vertex 𝑧
Output: Path between 𝑣 and 𝑧
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆. push(𝑣)
3. if 𝑣 = 𝑧 then

4. return 𝑆.elements( )
5. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

6. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷) then

7. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
8. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

9. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
10. 𝑆.push(𝑒)
11. pathDFS 𝐺,𝑤
12. 𝑆.pop( )
13. else

14. setLabel(𝑒, 𝐵𝐴𝐶𝐾)
15. 𝑆.pop( )



APPLICATION
CYCLE FINDING

• We can specialize the DFS algorithm to find a simple cycle 

using the template method pattern

• We use a stack 𝑆 to keep track of the path between the 

start vertex and the current vertex

• As soon as a back edge 𝑣, 𝑤 is encountered, we return 

the cycle as the portion of the stack from the top to vertex 

𝑤

Algorithm cycleDFS(𝐺, 𝑣)
Input: Graph 𝐺, a start vertex 𝑣
Output: Cycle containing 𝑣
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆.push(𝑣)
3. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

4. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷) then

5. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
6. 𝑆.push 𝑒
7. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

8. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
9. cycleDFS 𝐺,𝑤
10. 𝑆.pop( )
11. else

12. Stack 𝑇 ← ∅
13. repeat

14. 𝑇.push(S.pop())
15. until 𝑇.top = 𝑤
16. return 𝑇.elements
17. 𝑆.pop( )



DIRECTED DFS

• We can specialize the traversal algorithms (DFS 

and BFS) to digraphs by traversing edges only 

along their direction

• In the directed DFS algorithm, we have four types 

of edges

• discovery edges

• back edges

• forward edges

• cross edges

• A directed DFS starting at a vertex 𝑠 determines 

the vertices reachable from 𝑠 A
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REACHABILITY

• DFS tree rooted at 𝑣: vertices reachable from 𝑣 via directed paths
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STRONG CONNECTIVITY

• Each vertex can reach all other vertices
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STRONG CONNECTIVITY ALGORITHM

• Pick a vertex 𝑣 in 𝐺

• Perform a DFS from 𝑣 in 𝐺

• If there’s a 𝑤 not visited, print “no”

• Let 𝐺’ be 𝐺 with edges reversed

• Perform a DFS from 𝑣 in 𝐺’

• If there’s a 𝑤 not visited, print “no”

• Else, print “yes”

• Running time: 𝑂(𝑛 +𝑚)
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STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the 

subgraph

• Can also be done in 𝑂(𝑛 +𝑚) time using DFS, but is more complicated 

(similar to biconnectivity).

{ a , c , g }

{ f , d , e , b }
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BREADTH-FIRST SEARCH

• Breadth-first search (BFS) is a general 

technique for traversing a graph

• A BFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• BFS on a graph with n vertices and m 

edges takes 𝑂(𝑛 +𝑚) time

• BFS can be further extended to solve 

other graph problems

• Find and report a path with the minimum 

number of edges between two given 

vertices 

• Find a simple cycle, if there is one



BFS ALGORITHM

• The algorithm uses a mechanism for setting and getting “labels” 
of vertices and edges

Algorithm BFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges and 

partition of the vertices of 𝐺
1. for each 𝑣 ∈ 𝐺.vertices do

2. setLabel(𝑣, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
3. for each 𝑒 ∈ 𝐺.edges( ) do

4. setLabel(𝑒, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺.vertices( ) do

6. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

7. BFS 𝐺, 𝑣

Algorithm BFS(𝐺, 𝑠)
Input: Graph 𝐺, a start vertex 𝑠
1. List 𝐿0 ← 𝑠
2. setLabel(𝑠, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
3. 𝑖 ← 0
4. while ¬𝐿𝑖 .isEmpty( ) do

5. List 𝐿𝑖+1 ← ∅
6. for each 𝑣 ∈ 𝐿𝑖 do

7. for each 𝑒 ∈ 𝐺.outgoingEdges(𝑣) do

8. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

9. 𝑤 ← 𝐺.opposite 𝑣, 𝑒
10. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

11. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
12. setLabel(𝑤, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
13. 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ 𝑤
14. else

15. setLabel(𝑒, 𝐶𝑅𝑂𝑆𝑆)
16. 𝑖 ← 𝑖 + 1



EXAMPLE
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cross edge

A visited vertex

A unexplored vertex
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EXAMPLE
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EXAMPLE
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EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex F

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited and note the level they are in

• Label edges  as discovery or cross edges
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PROPERTIES

• Notation

• 𝐺𝑠: connected component of 𝑠

• Property 1

• BFS(𝐺, 𝑠) visits all the vertices and edges of 𝐺𝑠

• Property 2

• The discovery edges labeled by BFS 𝐺, 𝑠 form a 

spanning tree 𝑇𝑠 of 𝐺𝑠

• Property 3

• For each vertex 𝑣 ∈ 𝐿𝑖

• The path of 𝑇𝑠 from 𝑠 to 𝑣 has 𝑖 edges 

• Every path from 𝑠 to 𝑣 in 𝐺𝑠 has at least 𝑖 edges
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ANALYSIS

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice 

• once as UNEXPLORED

• once as VISITED

• Each edge is labeled twice

• once as UNEXPLORED

• once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence 𝐿𝑖

• Method outgoingEdges( ) is called once for each vertex

• BFS runs in 𝑂 𝑛 +𝑚 time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚



APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a 

graph 𝐺 to solve the following problems in 𝑂 𝑛 +𝑚 time

• Compute the connected components of 𝐺

• Compute a spanning forest of 𝐺

• Find a simple cycle in 𝐺, or report that 𝐺 is a forest

• Given two vertices of 𝐺, find a path in 𝐺 between them with the minimum number of 

edges, or report that no such path exists



DFS VS. BFS
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Spanning forest,
connected components, paths, cycles

 

Shortest paths 

Biconnected components 



DFS VS. BFS

Back edge 𝑣,𝑤

• 𝑤 is an ancestor of 𝑣 in the tree of 

discovery edges

Cross edge 𝑣,𝑤
• 𝑤 is in the same level as 𝑣 or in the 

next level in the tree of discovery 
edges
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TOPOLOGICAL ORDERING
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DAGS AND TOPOLOGICAL ORDERING

• A directed acyclic graph (DAG) is a digraph 

that has no directed cycles

• A topological ordering of a digraph is a 

numbering 

• 𝑣1, … , 𝑣𝑛

• Of the vertices such that for every edge 𝑣𝑖 , 𝑣𝑗 , 

we have 𝑖 < 𝑗

• Example: in a task scheduling digraph, a 

topological ordering a task sequence that 

satisfies the precedence constraints

• Theorem - A digraph admits a topological 

ordering if and only if it is a DAG
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APPLICATION

• Scheduling: edge (𝑎, 𝑏) means task 𝑎 must be completed before 𝑏 can be 

started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21
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ics171



EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

more c.s.

write c.s. program

dream about graphs

play

wake up

eat

nap

study computer sci.

work out

sleep

A typical student day

bake cookies



EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

more c.s.

write c.s. program

bake cookies

dream about graphs

play

wake up

eat

nap

study computer sci.

work out

sleep

A typical student day1
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ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort 𝐺

Input: Directed Acyclic Graph (DAG) 𝐺

Output: Topological ordering of 𝐺
1. 𝐻 ← 𝐺
2. 𝑛 ← 𝐺.numVertices
3. while ¬𝐻.isEmpty do

4. Let 𝑣 be a vertex with no outgoing edges

5. Label 𝑣 ← 𝑛
6. 𝑛 ← 𝑛 − 1
7. 𝐻.removeVertex 𝑣



IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search

• 𝑂(𝑛 + 𝑚) time.

Algorithm topologicalDFS 𝐺
Input: DAG 𝐺
Output: Topological ordering of 𝐺
1. 𝑛 ← 𝐺.numVertices
2. Initialize all vertices as 

𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each vertex 𝑣 ∈ 𝐺.vertices do

4. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. topologicalDFS 𝐺, 𝑣

Algorithm topologicalDFS 𝐺, 𝑣
Input: DAG 𝐺, start vertex 𝑣
Output: Labeling of the vertices of 𝐺

in the connected component of 𝑣
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

3. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
4. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. //𝑒 is a discovery edge

6. topologicalDFS 𝐺,𝑤
7. else

8. //𝑒 is a forward, cross, or back edge

9. Label 𝑣 with topological number 𝑛
10. 𝑛 ← 𝑛 − 1



TOPOLOGICAL SORTING EXAMPLE
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MINIMUM SPANNING TREES
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MINIMUM SPANNING TREE

• Minimum spanning tree (MST)

• Spanning tree of a weighted graph 

with minimum total edge weight

• Applications

• Communications networks

• Transportation networks
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EXERCISE
MST

• Show an MST of the following graph.

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL



CYCLE PROPERTY

• Cycle Property:

• Let 𝑇 be a minimum spanning tree of a 

weighted graph 𝐺

• Let 𝑒 be an edge of 𝐺 that is not in 𝑇
and 𝐶 let be the cycle formed by 𝑒 with 

𝑇

• For every edge 𝑓 of 𝐶, 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 ≤ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒

• Proof by contradiction:

• If 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 > 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) we can get 

a spanning tree of smaller weight by 

replacing 𝑒 with 𝑓
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Replacing f with e yields

a better spanning tree 



PARTITION PROPERTY

• Partition Property:

• Consider a partition of the vertices of 𝐺 into subsets 𝑈
and 𝑉

• Let 𝑒 be an edge of minimum weight across the partition

• There is a minimum spanning tree of G containing edge 

𝑒

• Proof by contradition:

• Let 𝑇 be an MST of 𝐺

• If 𝑇 does not contain 𝑒, consider the cycle 𝐶 formed by 

𝑒 with 𝑇 and let 𝑓 be an edge of 𝐶 across the partition

• By the cycle property,

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 ≤ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

• Thus, 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒

• We obtain another MST by replacing 𝑓 with 𝑒
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PRIM-JARNIK’S ALGORITHM

• We pick an arbitrary vertex 𝑠 and we grow the MST as a cloud of vertices, starting 

from 𝑠

• We store with each vertex 𝑣 a label 𝑑 𝑣 representing the smallest weight of an 

edge connecting 𝑣 to a vertex in the cloud 

• At each step:

• We add to the cloud the vertex 𝑢 outside the 

cloud with the smallest distance label

• We update the labels of the vertices adjacent 

to 𝑢



PRIM-JARNIK’S ALGORITHM

• An adaptable priority queue stores the vertices outside the 

cloud

• Key: distance, 𝐷[𝑣]

• Element: vertex 𝑣

• 𝑄. 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑖, 𝑘 changes the key of an item

• We store three labels with each vertex 𝑣:

• Distance 𝐷[𝑣]

• Parent edge in MST 𝑃[𝑣]

• Locator in priority queue

Algorithm PrimJarnikMST(𝐺)
Input: A weighted connected graph 𝐺
Output: A minimum spanning tree 𝑇 of 𝐺
1. Pick any vertex 𝑠 of 𝐺
2. 𝐷 𝑠 ← 0; 𝑃 𝑠 ← ∅
3. for each vertex 𝑣 ≠ 𝑠 do

4. 𝐷 𝑣 ← ∞; 𝑃 𝑣 ← ∅
5. 𝑇 ← ∅
6. Priority queue 𝑄 of vertices with 

𝐷[𝑣] as the key

7. while ¬𝑄.isEmpty( ) do

8. 𝑢 ← 𝑄.removeMin( )
9. Add vertex 𝑢 and edge 𝑃[𝑢] to 𝑇
10. for each 𝑒 ∈ 𝑢.outgoingEdges do

11. 𝑣 ← 𝐺.opposite 𝑢, 𝑒
12. if 𝑒.weight( ) < 𝐷[𝑣] then

13. 𝐷 𝑣 ← 𝑒.weight( ); 𝑃 𝑣 ← 𝑒
14. 𝑄.replace 𝑣, 𝐷[𝑣]
15.return 𝑇
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EXERCISE
PRIM’S MST ALGORITHM

• Show how Prim’s MST algorithm works on the following graph, assuming you 

start with SFO

• Show how the MST evolves in each iteration.
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ANALYSIS

• Graph operations

• Method incidentEdges is called once for each vertex

• Label operations

• We set/get the distance, parent and locator labels of vertex 𝑧 𝑂 deg 𝑧 times

• Setting/getting a label takes 𝑂 1 time

• Priority queue operations

• Each vertex is inserted once into and removed once from the priority queue, where each insertion or 

removal takes 𝑂 log 𝑛 time

• The key of a vertex 𝑤 in the priority queue is modified at most deg 𝑤 times, where each key change 

takes 𝑂 log𝑛 time 

• Prim-Jarnik’s algorithm runs in 𝑂 𝑛 +𝑚 log 𝑛 time provided the graph is represented by 

the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

• If the graph is connected the running time is 𝑂 𝑚 log𝑛



EXAM 3

• Hack sheet – you can have a single 8 ½" x 11" paper with handwritten notes on 

both sides with you during the exam. You can put anything on it, but summary slides 

and the generic tree traversal algorithms make great candidates.

• No Java language/programming questions. Lecture material only.

• Format – 5 questions and a bonus

• Q1 – Fill-in-the-blank questions (similar to quizzes)

• Q2 – Short answer with cumulative material

• Q3 – Sorting and divide-and-conquer (similar to homework)

• Q4 – Write and/or analyze algorithm using Graph ADT (similar to homework)

• Q5 – Write and/or analyze algorithm using Graph ADT (similar to homework)

• Bonus – ?


