
CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

ORD

DFW

SFO

LAX

DEPTH-FIRST SEARCH
DB

A

C

E

DEPTH-FIRST SEARCH

• Depth-first search (DFS) is a general

technique for traversing a graph

• A DFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• DFS on a graph with 𝑛 vertices and 𝑚
edges takes 𝑂(𝑛 +𝑚) time

• DFS can be further extended to solve

other graph problems

• Find and report a path between two

given vertices

• Find a cycle in the graph

• Depth-first search is to graphs as what

Euler tour is to binary trees

DFS ALGORITHM FROM A VERTEX

Algorithm DFS(𝐺, 𝑢)

Input: A graph 𝐺 and a vertex 𝑢 of 𝐺

Output: A collection of vertices reachable from 𝑢,

with their discovery edges

1. Mark 𝑢 as visited

2. for each edge 𝑒 = 𝑢, 𝑣 ∈ 𝐺.outgoingEdges(𝑢) do

3. if 𝑣 has not been visited then

4. Record 𝑒 as a discovery edge for 𝑣

5. DFS(𝐺, 𝑣)

EXAMPLE

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

𝐼(𝐴) = {𝑩, 𝐶, 𝐷, 𝐸}

𝐼(𝐵) = {𝑨, 𝐶, 𝐹}
𝐼(𝐵) = {𝐴, 𝑪, 𝐹}

𝐼(𝐶) = {𝑨, 𝐵, 𝐷, 𝐸}

DB

A

C

E

F G

DB

A

C

E

F G

DB

A

C

E

F G

𝐼(𝐶) = {𝐴, 𝑩, 𝐷, 𝐸}
𝐼(𝐶) = {𝐴, 𝐵, 𝑫, 𝐸}

EXAMPLE

𝐼(𝐷) = {𝑨, 𝐶} 𝐼(𝐸) = {𝑨, 𝐶}

𝐼(𝐶) = {𝐴, 𝐵, 𝐷, 𝑬}𝐼(𝐶) = {𝐴, 𝐵,𝑫, 𝐸}

𝐼(𝐷) = {𝐴, 𝑪}
𝐼(𝐷) = {𝐴, 𝐶}

𝐼(𝐸) = {𝐴, 𝑪}
𝐼(𝐸) = {𝐴, 𝐶}

DB

A

C

E

F G

DB

A

C

E

F G

DB

A

C

E

F G

DB

A

C

E

F G

EXAMPLE
𝐼(𝐶) = {𝐴, 𝐵, 𝐷, 𝐸}
𝐼(𝐵) = {𝐴, 𝐶, 𝑭}

DB

A

C

E

F G

DB

A

C

E

F G

𝐼(𝐺) = ∅

𝐼(𝐹) = {𝐵}

𝐼(𝐵) = {𝐴, 𝐶, 𝐹}
𝐼(𝐴) = {𝐴, 𝐵, 𝐶, 𝐷}

DB

A

C

E

F G

EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited

• Label edges as discovery or back edges

CB

A

E

D

F

DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic

strategy for exploring a maze

• We mark each intersection, corner and

dead end (vertex) visited

• We mark each corridor (edge) traversed

• We keep track of the path back to the

entrance (start vertex) by means of a

rope (recursion stack)

DFS ALGORITHM

• The algorithm uses a mechanism for setting and

getting “labels” of vertices and edges

Algorithm DFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges of 𝐺
as discovery edges and back edges

1. for each 𝑣 ∈ 𝐺.vertices do

2. setLabel 𝑣, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each 𝑒 ∈ 𝐺.edges do

4. setLabel(𝑒, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺.vertices do

6. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

7. DFS(𝐺, 𝑣)

Algorithm DFS(𝐺, 𝑣)
Input: Graph 𝐺 and a start vertex 𝑣
Output: Labeling of the edges of 𝐺 in

the connected component of 𝑣 as

discovery edges and back edges

1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

3. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
4. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
5. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

6. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
7. DFS(𝐺, 𝑤)
8. else

9. setLabel(𝑒, 𝐵𝐴𝐶𝐾)

PROPERTIES OF DFS

• Property 1

• DFS(𝐺, 𝑣) visits all the vertices and

edges in the connected component of 𝑣

• Property 2

• The discovery edges labeled by

DFS(𝐺, 𝑣) form a spanning tree of the

connected component of 𝑣

DB

A

C

E

F G

v1

v2

ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes 𝑂(1) time

• Each vertex is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝑉𝐼𝑆𝐼𝑇𝐸𝐷

• Each edge is labeled twice

• once as 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷

• once as 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 or 𝐵𝐴𝐶𝐾

• Function DFS(𝐺, 𝑣) and the method outgoingEdges are called once for each vertex

• DFS runs in 𝑂(𝑛 +𝑚) time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

DB

A

C

E

F G

APPLICATION
PATH FINDING

• We can specialize the DFS algorithm to find a path

between two given vertices 𝑢 and 𝑧 using the template

method pattern

• We call DFS(𝐺, 𝑢) with 𝑢 as the start vertex

• We use a stack 𝑆 to keep track of the path between the

start vertex and the current vertex

• As soon as destination vertex 𝑧 is encountered, we return

the path as the contents of the stack

Algorithm pathDFS(𝐺, 𝑣, 𝑧)
Input: Graph 𝐺, a start vertex 𝑣,

a goal vertex 𝑧
Output: Path between 𝑣 and 𝑧
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆. push(𝑣)
3. if 𝑣 = 𝑧 then

4. return 𝑆.elements()
5. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

6. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷) then

7. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
8. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

9. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
10. 𝑆.push(𝑒)
11. pathDFS 𝐺,𝑤
12. 𝑆.pop()
13. else

14. setLabel(𝑒, 𝐵𝐴𝐶𝐾)
15. 𝑆.pop()

APPLICATION
CYCLE FINDING

• We can specialize the DFS algorithm to find a simple cycle

using the template method pattern

• We use a stack 𝑆 to keep track of the path between the

start vertex and the current vertex

• As soon as a back edge 𝑣, 𝑤 is encountered, we return

the cycle as the portion of the stack from the top to vertex

𝑤

Algorithm cycleDFS(𝐺, 𝑣)
Input: Graph 𝐺, a start vertex 𝑣
Output: Cycle containing 𝑣
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. 𝑆.push(𝑣)
3. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

4. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷) then

5. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
6. 𝑆.push 𝑒
7. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

8. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
9. cycleDFS 𝐺,𝑤
10. 𝑆.pop()
11. else

12. Stack 𝑇 ← ∅
13. repeat

14. 𝑇.push(S.pop())
15. until 𝑇.top = 𝑤
16. return 𝑇.elements
17. 𝑆.pop()

DIRECTED DFS

• We can specialize the traversal algorithms (DFS

and BFS) to digraphs by traversing edges only

along their direction

• In the directed DFS algorithm, we have four types

of edges

• discovery edges

• back edges

• forward edges

• cross edges

• A directed DFS starting at a vertex 𝑠 determines

the vertices reachable from 𝑠 A

C

E

B

D

REACHABILITY

• DFS tree rooted at 𝑣: vertices reachable from 𝑣 via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

STRONG CONNECTIVITY

• Each vertex can reach all other vertices

a

d

c

b

e

f

g

STRONG CONNECTIVITY ALGORITHM

• Pick a vertex 𝑣 in 𝐺

• Perform a DFS from 𝑣 in 𝐺

• If there’s a 𝑤 not visited, print “no”

• Let 𝐺’ be 𝐺 with edges reversed

• Perform a DFS from 𝑣 in 𝐺’

• If there’s a 𝑤 not visited, print “no”

• Else, print “yes”

• Running time: 𝑂(𝑛 +𝑚)

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the

subgraph

• Can also be done in 𝑂(𝑛 +𝑚) time using DFS, but is more complicated

(similar to biconnectivity).

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

BREADTH-FIRST SEARCH CB

A

E

D

L0

L1

F
L2

BREADTH-FIRST SEARCH

• Breadth-first search (BFS) is a general

technique for traversing a graph

• A BFS traversal of a graph 𝐺

• Visits all the vertices and edges of 𝐺

• Determines whether 𝐺 is connected

• Computes the connected components of 𝐺

• Computes a spanning forest of 𝐺

• BFS on a graph with n vertices and m

edges takes 𝑂(𝑛 +𝑚) time

• BFS can be further extended to solve

other graph problems

• Find and report a path with the minimum

number of edges between two given

vertices

• Find a simple cycle, if there is one

BFS ALGORITHM

• The algorithm uses a mechanism for setting and getting “labels”
of vertices and edges

Algorithm BFS(𝐺)
Input: Graph 𝐺
Output: Labeling of the edges and

partition of the vertices of 𝐺
1. for each 𝑣 ∈ 𝐺.vertices do

2. setLabel(𝑣, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
3. for each 𝑒 ∈ 𝐺.edges() do

4. setLabel(𝑒, 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷)
5. for each 𝑣 ∈ 𝐺.vertices() do

6. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

7. BFS 𝐺, 𝑣

Algorithm BFS(𝐺, 𝑠)
Input: Graph 𝐺, a start vertex 𝑠
1. List 𝐿0 ← 𝑠
2. setLabel(𝑠, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
3. 𝑖 ← 0
4. while ¬𝐿𝑖 .isEmpty() do

5. List 𝐿𝑖+1 ← ∅
6. for each 𝑣 ∈ 𝐿𝑖 do

7. for each 𝑒 ∈ 𝐺.outgoingEdges(𝑣) do

8. if getLabel 𝑒 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

9. 𝑤 ← 𝐺.opposite 𝑣, 𝑒
10. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

11. setLabel(𝑒, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌)
12. setLabel(𝑤, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
13. 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ 𝑤
14. else

15. setLabel(𝑒, 𝐶𝑅𝑂𝑆𝑆)
16. 𝑖 ← 𝑖 + 1

EXAMPLE

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

EXAMPLE

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

EXAMPLE

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex F

• Assume adjacent edges are processed in alphabetical order

• Number vertices in the order they are visited and note the level they are in

• Label edges as discovery or cross edges

CB

A

E

D

F

PROPERTIES

• Notation

• 𝐺𝑠: connected component of 𝑠

• Property 1

• BFS(𝐺, 𝑠) visits all the vertices and edges of 𝐺𝑠

• Property 2

• The discovery edges labeled by BFS 𝐺, 𝑠 form a

spanning tree 𝑇𝑠 of 𝐺𝑠

• Property 3

• For each vertex 𝑣 ∈ 𝐿𝑖

• The path of 𝑇𝑠 from 𝑠 to 𝑣 has 𝑖 edges

• Every path from 𝑠 to 𝑣 in 𝐺𝑠 has at least 𝑖 edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

ANALYSIS

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice

• once as UNEXPLORED

• once as VISITED

• Each edge is labeled twice

• once as UNEXPLORED

• once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence 𝐿𝑖

• Method outgoingEdges() is called once for each vertex

• BFS runs in 𝑂 𝑛 +𝑚 time provided the graph is represented by the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a

graph 𝐺 to solve the following problems in 𝑂 𝑛 +𝑚 time

• Compute the connected components of 𝐺

• Compute a spanning forest of 𝐺

• Find a simple cycle in 𝐺, or report that 𝐺 is a forest

• Given two vertices of 𝐺, find a path in 𝐺 between them with the minimum number of

edges, or report that no such path exists

DFS VS. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS

Spanning forest,
connected components, paths, cycles

Shortest paths

Biconnected components

DFS VS. BFS

Back edge 𝑣,𝑤

• 𝑤 is an ancestor of 𝑣 in the tree of

discovery edges

Cross edge 𝑣,𝑤
• 𝑤 is in the same level as 𝑣 or in the

next level in the tree of discovery
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

TOPOLOGICAL ORDERING

JFK

BOS

MIA

ORD

LAX
DFW

SFO

DAGS AND TOPOLOGICAL ORDERING

• A directed acyclic graph (DAG) is a digraph

that has no directed cycles

• A topological ordering of a digraph is a

numbering

• 𝑣1, … , 𝑣𝑛

• Of the vertices such that for every edge 𝑣𝑖 , 𝑣𝑗 ,

we have 𝑖 < 𝑗

• Example: in a task scheduling digraph, a

topological ordering a task sequence that

satisfies the precedence constraints

• Theorem - A digraph admits a topological

ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

APPLICATION

• Scheduling: edge (𝑎, 𝑏) means task 𝑎 must be completed before 𝑏 can be

started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

more c.s.

write c.s. program

dream about graphs

play

wake up

eat

nap

study computer sci.

work out

sleep

A typical student day

bake cookies

EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that 𝑢, 𝑣

in 𝐸 implies 𝑢 < 𝑣

more c.s.

write c.s. program

bake cookies

dream about graphs

play

wake up

eat

nap

study computer sci.

work out

sleep

A typical student day1

2 3

4 5

6

7

8

9

10

11

ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort 𝐺

Input: Directed Acyclic Graph (DAG) 𝐺

Output: Topological ordering of 𝐺
1. 𝐻 ← 𝐺
2. 𝑛 ← 𝐺.numVertices
3. while ¬𝐻.isEmpty do

4. Let 𝑣 be a vertex with no outgoing edges

5. Label 𝑣 ← 𝑛
6. 𝑛 ← 𝑛 − 1
7. 𝐻.removeVertex 𝑣

IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search

• 𝑂(𝑛 + 𝑚) time.

Algorithm topologicalDFS 𝐺
Input: DAG 𝐺
Output: Topological ordering of 𝐺
1. 𝑛 ← 𝐺.numVertices
2. Initialize all vertices as

𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷
3. for each vertex 𝑣 ∈ 𝐺.vertices do

4. if getLabel 𝑣 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. topologicalDFS 𝐺, 𝑣

Algorithm topologicalDFS 𝐺, 𝑣
Input: DAG 𝐺, start vertex 𝑣
Output: Labeling of the vertices of 𝐺

in the connected component of 𝑣
1. setLabel(𝑣, 𝑉𝐼𝑆𝐼𝑇𝐸𝐷)
2. for each 𝑒 ∈ 𝐺.outgoingEdges 𝑣 do

3. 𝑤 ← 𝐺.opposite(𝑣, 𝑒)
4. if getLabel 𝑤 = 𝑈𝑁𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷 then

5. //𝑒 is a discovery edge

6. topologicalDFS 𝐺,𝑤
7. else

8. //𝑒 is a forward, cross, or back edge

9. Label 𝑣 with topological number 𝑛
10. 𝑛 ← 𝑛 − 1

TOPOLOGICAL SORTING EXAMPLE

TOPOLOGICAL SORTING EXAMPLE

9

TOPOLOGICAL SORTING EXAMPLE

8

9

TOPOLOGICAL SORTING EXAMPLE

7

8

9

TOPOLOGICAL SORTING EXAMPLE

7

8

6

9

TOPOLOGICAL SORTING EXAMPLE

7

8

56

9

TOPOLOGICAL SORTING EXAMPLE

7

4

8

56

9

TOPOLOGICAL SORTING EXAMPLE

7

4

8

56

3

9

TOPOLOGICAL SORTING EXAMPLE

2

7

4

8

56

3

9

TOPOLOGICAL SORTING EXAMPLE

2

7

4

8

56

1

3

9

MINIMUM SPANNING TREES

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

MINIMUM SPANNING TREE

• Minimum spanning tree (MST)

• Spanning tree of a weighted graph

with minimum total edge weight

• Applications

• Communications networks

• Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

EXERCISE
MST

• Show an MST of the following graph.

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

CYCLE PROPERTY

• Cycle Property:

• Let 𝑇 be a minimum spanning tree of a

weighted graph 𝐺

• Let 𝑒 be an edge of 𝐺 that is not in 𝑇
and 𝐶 let be the cycle formed by 𝑒 with

𝑇

• For every edge 𝑓 of 𝐶,

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 ≤ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒

• Proof by contradiction:

• If 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 > 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) we can get

a spanning tree of smaller weight by

replacing 𝑒 with 𝑓

8

4

2
3

6

7

7

9

8

e

C

f

8

4

2
3

6

7

7

9

8

C

e

f

Replacing f with e yields

a better spanning tree

PARTITION PROPERTY

• Partition Property:

• Consider a partition of the vertices of 𝐺 into subsets 𝑈
and 𝑉

• Let 𝑒 be an edge of minimum weight across the partition

• There is a minimum spanning tree of G containing edge

𝑒

• Proof by contradition:

• Let 𝑇 be an MST of 𝐺

• If 𝑇 does not contain 𝑒, consider the cycle 𝐶 formed by

𝑒 with 𝑇 and let 𝑓 be an edge of 𝐶 across the partition

• By the cycle property,

𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 ≤ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

• Thus, 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒

• We obtain another MST by replacing 𝑓 with 𝑒

U V
7

4

2
8

5

7

3

9

8 e

f

Replacing f with e yields

another MST

7

4

2
8

5

7

3

9

8 e

f
U V

PRIM-JARNIK’S ALGORITHM

• We pick an arbitrary vertex 𝑠 and we grow the MST as a cloud of vertices, starting

from 𝑠

• We store with each vertex 𝑣 a label 𝑑 𝑣 representing the smallest weight of an

edge connecting 𝑣 to a vertex in the cloud

• At each step:

• We add to the cloud the vertex 𝑢 outside the

cloud with the smallest distance label

• We update the labels of the vertices adjacent

to 𝑢

PRIM-JARNIK’S ALGORITHM

• An adaptable priority queue stores the vertices outside the

cloud

• Key: distance, 𝐷[𝑣]

• Element: vertex 𝑣

• 𝑄. 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑖, 𝑘 changes the key of an item

• We store three labels with each vertex 𝑣:

• Distance 𝐷[𝑣]

• Parent edge in MST 𝑃[𝑣]

• Locator in priority queue

Algorithm PrimJarnikMST(𝐺)
Input: A weighted connected graph 𝐺
Output: A minimum spanning tree 𝑇 of 𝐺
1. Pick any vertex 𝑠 of 𝐺
2. 𝐷 𝑠 ← 0; 𝑃 𝑠 ← ∅
3. for each vertex 𝑣 ≠ 𝑠 do

4. 𝐷 𝑣 ← ∞; 𝑃 𝑣 ← ∅
5. 𝑇 ← ∅
6. Priority queue 𝑄 of vertices with

𝐷[𝑣] as the key

7. while ¬𝑄.isEmpty() do

8. 𝑢 ← 𝑄.removeMin()
9. Add vertex 𝑢 and edge 𝑃[𝑢] to 𝑇
10. for each 𝑒 ∈ 𝑢.outgoingEdges do

11. 𝑣 ← 𝐺.opposite 𝑢, 𝑒
12. if 𝑒.weight() < 𝐷[𝑣] then

13. 𝐷 𝑣 ← 𝑒.weight(); 𝑃 𝑣 ← 𝑒
14. 𝑄.replace 𝑣, 𝐷[𝑣]
15.return 𝑇

EXAMPLE

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

8

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 4

7

EXAMPLE

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

EXERCISE
PRIM’S MST ALGORITHM

• Show how Prim’s MST algorithm works on the following graph, assuming you

start with SFO

• Show how the MST evolves in each iteration.

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

ANALYSIS

• Graph operations

• Method incidentEdges is called once for each vertex

• Label operations

• We set/get the distance, parent and locator labels of vertex 𝑧 𝑂 deg 𝑧 times

• Setting/getting a label takes 𝑂 1 time

• Priority queue operations

• Each vertex is inserted once into and removed once from the priority queue, where each insertion or

removal takes 𝑂 log 𝑛 time

• The key of a vertex 𝑤 in the priority queue is modified at most deg 𝑤 times, where each key change

takes 𝑂 log𝑛 time

• Prim-Jarnik’s algorithm runs in 𝑂 𝑛 +𝑚 log 𝑛 time provided the graph is represented by

the adjacency list structure

• Recall that Σ𝑣 deg 𝑣 = 2𝑚

• If the graph is connected the running time is 𝑂 𝑚 log𝑛

EXAM 3

• Hack sheet – you can have a single 8 ½" x 11" paper with handwritten notes on

both sides with you during the exam. You can put anything on it, but summary slides

and the generic tree traversal algorithms make great candidates.

• No Java language/programming questions. Lecture material only.

• Format – 5 questions and a bonus

• Q1 – Fill-in-the-blank questions (similar to quizzes)

• Q2 – Short answer with cumulative material

• Q3 – Sorting and divide-and-conquer (similar to homework)

• Q4 – Write and/or analyze algorithm using Graph ADT (similar to homework)

• Q5 – Write and/or analyze algorithm using Graph ADT (similar to homework)

• Bonus – ?

