
CH7.
LIST AND ITERATOR ADTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH 

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND 

GOLDWASSER (WILEY 2016)



ITERATORS

• An iterator is a software design pattern that abstracts the process of scanning 

through a sequence of elements, one element at a time.

• Some iterators offer a third operation: remove() to modify the data 

structure while scanning its elements



USES OF ITERATORS

• Abstracts a series or collection of elements

• A container, e.g., List or PositionalList

• A stream of data from a network or file

• Data generated by a series of computations, e.g., random numbers

• Facilitate generic programming of algorithms to operate on any source of data, e.g., 

finding the minimum element in the data

• Why?

• While it is true we could just reimplement minimum as many times as needed, it is better to use 

a trusted single implementation for: (1) correctness – no silly typos and (2) efficiency –

professional libraries are often better than what you could implement on your own.



THE ITERABLE INTERFACE

• Java defines a parameterized interface, named Iterable, that includes the following 

single method:

• iterator(): Returns an iterator of the elements in the collection.

• An instance of a typical collection class in Java, such as an ArrayList, is 

Iterable (but not itself an iterator); it produces an iterator for its collection as the 

return value of the iterator() method. 

• Each call to iterator() returns a new iterator instance, thereby allowing 

multiple (even simultaneous) traversals of a collection.



EXAMPLE IN PSEUDOCODE

• The following algorithm will compute the minimum of an iterable collection:

Algorithm minimum

Input: Iterable collection 𝐼 of comparable Elements

1.Iterator 𝑖𝑡 ← 𝐼.iterator()

2.Element 𝑚𝑖𝑛 ← null

3.while 𝑖𝑡.hasNext() do

4. Element 𝑒 ← 𝑖𝑡.next()

5. if 𝑒.compareTo(𝑚𝑖𝑛) < 0 then

6. 𝑚𝑖𝑛 ← 𝑒

7.return 𝑚𝑖𝑛



EXAMPLE IN JAVA

• The following code will compute the minimum of an Iterable collection:

1.public static <E extends Comparable<E>> E minimum(

Iterable<E> iterable) {

2. Iterator<E> it = iterable.iterator();

3. E min = null;

4. while(it.hasNext()) {

5. E e = it.next();

6. if(e.compareTo(min) < 0)

7. min = e;

8. }

9. return min;

10.}



EXERCISE

• Write an algorithm and a Java program using iterators to compute whether a 

collection contains only unique elements.

• Test your generic method with both a Java ArrayList and a Java LinkedList



THE FOR-EACH LOOP

• Java’s Iterable class also plays a fundamental role in support of the “for-

each” loop syntax:

• is equivalent to:



EXAMPLE IN PSEUDOCODE

• The following algorithm will compute the minimum of an iterable collection:

Algorithm minimum

Input: Iterable collection 𝐼 of comparable Elements

1.Element 𝑚𝑖𝑛 ← null

2.for all Element e ∈ 𝐼 do

3. if 𝑒.compareTo(𝑚𝑖𝑛)< 0 then

4. 𝑚𝑖𝑛 ← 𝑒

5.return 𝑚𝑖𝑛



EXAMPLE IN JAVA

• The following code will compute the minimum of an Iterable collection:

1.public static <E extends Comparable<E>> E minimum(

Iterable<E> iterable) {

2. E min = null;

3. for(E e : iterable) {

4. if(e.compareTo(min) < 0)

5. min = e;

6. }

7. return min;

8.}



EXERCISE

• Simplify your algorithm and Java program using the for-each loop construct to 

determine whether a collection contains only unique elements.



FOR-EACH VS ITERATORS

• For-each is not always a replacement for iterators

• In fact it only replaces the most common use of iterators – iterating entirely through a 

collection

• When you can't use a for-each loop, use iterators

• Essentially, when you need more power, use more power

• Remember this is about generic programming. Iterators abstract the 

underlying collection. When you know your collection, you might be able to do 

something different.


