
CH7.
LIST AND ITERATOR ADTS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

LIST ADT

EXAMPLE

• A sequence of List operations:

ARRAY LISTS

• An obvious choice for implementing the list ADT is to use an array, 𝐴, where

𝐴 𝑖 stores (a reference to) the element with index 𝑖.

• With a representation based on an array 𝐴, the get(𝑖) and set(𝑖, 𝑒)

methods are easy to implement by accessing 𝐴[𝑖] (assuming 𝑖 is a legitimate

index).

𝐴

0 1 2 ni

𝑁 − 10

INSERTION

• In an operation add(𝑖, 𝑜), we need to make room for the new element by

shifting forward the 𝑛 − 𝑖 elements 𝐴 𝑖 , … , 𝐴 𝑛 − 1

• In the worst case (𝑖 = 0), this takes 𝑂 𝑛 time

A

0 1 2 n

o

i

A

0 1 2 ni

A

0 1 2 ni

ELEMENT REMOVAL

• In an operation remove(𝑖), we need to fill the hole left by the removed

element by shifting backward the 𝑛 − 𝑖 − 1 elements 𝐴 𝑖 + 1 ,… , 𝐴 𝑛 − 1

• In the worst case (𝑖 = 0), this takes 𝑂 𝑛 time

A

0 1 2 nr

A

0 1 2 n

o

i

A

0 1 2 ni

PERFORMANCE

• In an array-based implementation of a dynamic list:

• The space used by the data structure is 𝑂 𝑛

• Indexing the element (get/set) at 𝑖 takes 𝑂 1 time

• add and remove run in 𝑂 𝑛 time

• In an add operation, when the array is full, instead of throwing an exception,

we can replace the array with a larger one …

EXERCISE:

• Implement the Deque ADT with the List ADT

• Deque ADT:

• first(), last(), addFirst(e), addLast(e),
removeFirst(), removeLast(), size(), isEmpty()

• List functions:

• get(i), set(i, e), add(i, e), remove(i), size(),
isEmpty()

LIST SUMMARY

Array

Fixed-Size or Expandable

List Singly or

Doubly Linked

add(i, e),

remove(i)

𝑂(1) Best Case (𝑖 = 𝑛)

𝑂(𝑛) Worst Case

𝑂(𝑛) Average Case

?

get(i), set(i, e) 𝑂(1) ?

size(), isEmpty() 𝑂(1) ?

INTERVIEW QUESTION 1

• Write code to partition a list around a value x, such that all nodes less than x

come before all nodes greater than or equal to x.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

INTERVIEW QUESTION 2

• Implement a function to check if a list is a palindrome.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND

SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

POSITIONAL LISTS

• To provide for a general abstraction of a sequence of elements with the ability to

identify the location of an element, we define a positional list ADT.

• A position acts as a marker or token within the broader positional list.

• A position 𝑝 is unaffected by changes elsewhere in a list; the only way in which a

position becomes invalid is if an explicit command is issued to delete it.

• A position instance is a simple object, supporting only the following method:

• p.getElement(): Return the element stored at position 𝑝.

POSITIONAL LIST ADT

• Accessor methods:

POSITIONAL LIST ADT, 2

• Update methods:

EXAMPLE

• A sequence of Positional List

operations:

POSITIONAL LIST IMPLEMENTATION

• The most natural way to implement a

positional list is with a doubly-linked list.

prev next

element

trailerheader nodes/positions

elements

node

INSERTION, E.G., ADDAFTER(P, E)

A B X C

A B C

p

A B C

p

X

q

p q

REMOVE(P)

A B C D

p

A B C

D

p

A B C

PERFORMANCE

• Assume doubly-linked list implementation of Positional List ADT

• The space used by a list with 𝑛 elements is 𝑂(𝑛)

• The space used by each position of the list is 𝑂(1)

• All the operations of the List ADT run in 𝑂(1) time

POSITIONAL LIST SUMMARY

List Singly-Linked List Doubly- Linked

first(),

last(),

addFirst(),

addLast(),

addAfter()

𝑂(1) 𝑂(1)

addBefore(p,

e), erase()

𝑂(𝑛) Worst and Average case

𝑂(1) Best case

𝑂(1)

size(),

isEmpty()

𝑂(1) 𝑂(1)

INTERVIEW QUESTION 3

• When Bob wants to send Alice a message M on the internet, he breaks 𝑀 into

𝑛 data packets, numbers the packets consecutively, and injects them into the

network. When the packets arrive at Alice's computer, they may be out of

order, so Alice must assemble the sequence of 𝑛 packets in order before she

can be sure she has the entire message. Using Positional Lists describe and

analyze an algorithm for Alice to do this.

• Can you do better with a regular List?

