
JAVA ALGORITHMS



SUMMARY OF UTILITIES

• java.util.Arrays – static utilities for 

raw arrays

• Searching and sorting

• Equality comparisons and hash codes

• Fill

• Copy

• java.util.Collections – similar items 

for Lists. Also includes:

• Min, max, counts

• Reverse, shuffle

• java.util.streams.* - automatic 

data processing library (with parallelism 

included)

• There are many more algorithms and utilities 

in the java library!

• To find how to use them, go to the Java API!



EXAMPLE OF USING SORT

1.Scanner s = new Scanner(new File(“numbers.txt”));

2.ArrayList<Integer> numbers = new ArrayList<>();

3.while(s.hasNextInt())

4. numbers.add(s.nextInt());

5.…elsewhere…

6.Collections.sort(numbers);



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• In java.util.Collection provides a 

function stream(). A stream() allows 

you to perform functions over the data in 

the collection. Examples:

• filter – create a stream based on a 

predicate

• forEach – apply an action to each element

• map – create a new stream after applying an 

action to each element

• Many, many more

• You can always use the classic method of 

having a specialized file implement the 

required interface.

• OR you can use anonymous classes –

nameless classes

• OR you can use a lambda expression

• A lambda is an anonymous single method 

class, but defined with extremely terse syntax

• Can also loosly define them as nameless 

methods



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Take the following example function

1. public static void 

2. printIntegersInRange(

3. List<Integer> nums,

4. Integer low, 

5. Integer high) {

6. for(Integer i : nums)

7. if(i >= low && i <= high)

8. System.out.println(i);

9. }

• We should be able to generalize this. We already 

know how, use interfaces

1. public interface CheckInteger {

2. boolean test(Integer n);

3. }

• Then our function becomes

1. public static void 

2. printIntegersIf(

3. List<Integer> nums,

4. CheckInteger tester) {

5. for(Integer i : nums)

6. if(tester.test(i))

7. System.out.println(i);

8. }



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with a class

1. public class CheckRange0To100

2. implements CheckInteger {

3. public static Boolean 

4. test(Integer n) {

5. return n >= 0 && n <=100;

6. }

7. }

1. printIntegersIf(nums,

2. new CheckRange0To100());

• However, this seems really extensive for a one off 

class, right?

• Of course, so Java also has the ability to write 

things with anonymous classes…



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with an anonymous class

1. printIntegersIf(nums,

2. new CheckInteger() {

3. public boolean

4. test(Integer i) {

5. return i >= 0 && i <= 100;

6. }

7. }

8. );

• However, this still seems really extensive 

for a one off class, right?

• Of course, so Java 8 introduced the 

widely known concept of lambda 

functions



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with a lambda expression

1. printIntegersIf(nums,

2. (Integer i) -> i >= 0 && i <= 100

3. );

• Short and sweet!

• This allows us to write generic 

algorithms with functions as 

parameters easily!



ADVANCED ALGORITHMS WITH LAMBDA 
EXPRESSIONS (JAVA 8)

• Now with the standard Java provided functionals

found in the package java.util.function

1. public static void 

2. printIntegersInRange(

3. List<Integer> nums,

4. Predicate<Integer> tester) {

5. for(Integer i : nums)

6. if(tester.test(i))

7. System.out.println(i);

8. }

• And our lambda can become even shorter!

1. printIntegersIf(nums,

2. i -> i >= 0 && i <= 100

3. );

• Sort example
• Collections.sort(nums, 

(i1, i2) -> -i1.compareTo(i2));

• Full tutorial

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


PROBLEM

• Lets explore the power of streams and lambdas by bulk processing and 

"corrupting" some data! (obviously can be used to "clean" data as well)

• Download the source code from online. Change the TODO statements to 

perform the required actions to bulk process data. You can only use lambda 

expressions in this file (except when you read from the file)

• Work in pairs. After completing, show me the source file and then work on the 

next programming assignment.


