
JAVA PRIORITY QUEUE



SUMMARY OF CLASSES (PRIORITY QUEUE RELATED)

• PriorityQueue<E> - array-

based heap implementation of 

minimum priority queue

• Comparator<E> - can be useful 

for defining your own comparison 

between objects

• Others outside the scope of this 

course

• To find how to use them, go to the 

Java API!

https://docs.oracle.com/javase/9/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/9/docs/api/java/util/Comparator.html


Object

AbstractCollection<E>

AbstractQueue<E>

PriorityQueue<E>

Iterable<E>

Collection<E>

Queue<E>

Interfaces

Classes



EXAMPLE OF USING PRIORITYQUEUE<E>

1.Scanner s = new Scanner(new File(“numbers.txt”));

2.PriorityQueue<Integer> numbers = new PriorityQueue<>();

3.while(s.hasNextInt())

4. numbers.add(s.nextInt());

5.…elsewhere…

6.int sum = 0;

7.while(!numbers.isEmpty())

8. sum += numbers.poll(); //poll is removeMin()



COMPARISON IN JAVA

• It is not a Boolean less than. It is always an integer value 𝑖. So for two objects 𝑎 and 

𝑏, a comparison 𝑐𝑜𝑚𝑝 𝑎, 𝑏 returns:

• 𝑖 < 0 implies 𝑎 is ordered before 𝑏, e.g., <

• 𝑖 = 0 implies 𝑎. 𝑒𝑞𝑢𝑎𝑙𝑠(𝑏)

• 𝑖 > 0 implies 𝑎 is ordered after 𝑏, e.g., >

• First method - no new class. Have your class E implement Comparable<E>, which 

requires the int compareTo(E o) method

• Second method – separate comparator class that implements Comparator<E>

interface

• Must define compare(E o1, E o2) and equals(Object o)

• Here equals is a comparison to another comparator

https://docs.oracle.com/javase/9/docs/api/java/lang/Comparable.html


COMPARISON IN JAVA – FIRST METHOD
IMPLEMENT COMPARABLE

public class Foo implements Comparable<Foo> {

private int x;

public Foo(int x) {this.x = x;}

// … stuff …

public int compareTo(Foo other) {

return x – other.x; // Note, <0 means this is before other;

// = 0 means this.equals(other); 

// and >0 means this is after other

}

}



COMPARISON IN JAVA – SECOND METHOD
CREATE SEPARATE COMPARATOR

import java.util.Comparator;

public class CompareFoo implements Comparator<Foo> {

public int compare(Foo a, Foo b) {

return a.getX() - b.getX(); // Assume Foo does not implement 

// Comparable, and has a public getX()

// accessor

}

public boolean equals(Object obj) {

return obj instanceof CompareFoo;

}

}



PROBLEM
EVENT DRIVEN SIMULATION

• Event driven simulation – you want to estimate the profit for a coffee shop. There is an input 

file online stating the number of seats in the shop, the price per cup of coffee, and arrive 

events with a given time (integer) and number of partisans (integer) (1 pair per line)

• Use a priority queue of events, ordered by time to see how much profit the store will earn 

over this period. Rules:

• Arrive event - If a group enters and there are not enough seats they will leave. If they stay, an order 

event will be created at the current time + 1 + a random number below 4

• Order events - Every partisan of the group will buy 1 or 2 cups of coffee. Each orderEvent will also 

spawn a leaveEvent at the currentTime + 1 + a random number below 10.

• Leave event – When a group leaves, their chairs are opened up to another group

• Create an object oriented solution to this problem with your team. PLAN-IMPLEMENT-TEST!



EVENT DRIVEN SIMULATION
MAIN LOOP ALGORITHM

1.Priority queue of Events 𝑃𝑄

2.while ¬𝑃𝑄.isEmpty() do

3. 𝑃𝑄.removeMin().process()



EVENT DRIVEN SIMULATION 
POSSIBLE CLASS HIERARCHY

Event

int time

abstract void process(CoffeeShop cs)

ArriveEvent LeaveEvent OrderEvent

CoffeeShop

Priority queue

Contains main

EventComparator

Only if Event is not 
comparable


