(L
"

\} JAVA PRIORITY QUEUE

O\Tﬁ

SUMMARY OF CLASSES (PRIORITY QUEUE RELATED)

= - array- ® Others outside the scope of this
based heap implementation of course

minimum priority queue ® To find how to use them, go to the

¥ - can be useful Java API!
for defining your own comparison

between objects

/
(

https://docs.oracle.com/javase/9/docs/api/java/util/PriorityQueue.html
https://docs.oracle.com/javase/9/docs/api/java/util/Comparator.html

EXAMPLE OF USING PRIORITYQUEUE<E>

l. Scanner s = Scanner (File (i
2 . PriorityQueue<Integer> numbers = PriorityQueue<> () ;
(s.hasNextInt ())
4. numbers.add(s.nextInt ()) ;
J...elsewhere..
sum = 0;
(!numbers.isEmpty ())

8. sum += numbers.poll(); //poll is removeMin ()

COMPARISON IN JAVA

® It is not a Boolean less than. It is always an integer value i. So for two objects a and
b, a comparison comp(a, b) returns:
®* | < 0 implies a is ordered before b, e.g., <
* { = 0 implies a.equals(b)

®* i > 0 implies a is ordered after b, e.g., >

® First method - no new class. Have your class E implement , Which
requires the compareTo (E o) method

® Second method — separate comparator class that implements Comparator<E>
interface
®* Must define compare (E o0l, E 02) and equals (Object o)

® Here equals is a comparison to another comparator

https://docs.oracle.com/javase/9/docs/api/java/lang/Comparable.html

IMPLEMENT COMPARABLE

1\\5 COMPARISON IN JAVA — FIRST METHOD g

S Foo Comparable<Foo> ({
Xy
| XeYo X(x) {this.x = x;}
// stuff
]) compareTo (Foo other) {
x — other.x; // Note, <0 means this is before other;

// = 0 means this.equals (other);
}) // and >0 means this is after other
O

LN
\

O

[p

COMPARISON IN JAVA — SECOND METHOD f
CREATE SEPARATE COMPARATOR

jJava.util.Comparator;

CompareFoo Comparator<Foo> {
compare (Foo a, Foo b) {

a.getX() - b.getX(); // Assume Foo does not implement

// Comparable, and has a public getX()
// accessor

equals (Object obj) {

ob] CompareFoo;

LN
\

O

!
[o

PROBLEM
EVENT DRIVEN SIMULATION

® Event driven simulation — you want to estimate the profit for a coffee shop. There is an input
file online stating the number of seats in the shop, the price per cup of coffee, and arrive

events with a given time (integer) and number of partisans (integer) (1 pair per line)

® Use a priority queue of events, ordered by time to see how much profit the store will earn
over this period. Rules:

* Arrive event - If a group enters and there are not enough seats they will leave. If they stay, an order

event will be created at the current time + 1 + a random number below 4

®* Order events - Every partisan of the group will buy 1 or 2 cups of coffee. Each orderEvent will also

spawn a leaveEvent at the currentTime + 1 + a random number below 10.

®* Leave event — When a group leaves, their chairs are opened up to another group

®* Create an object oriented solution to this problem with your team. PLAN-IMPLEMENT-TEST!

MAIN LOOP ALGORITHM

1% EVENT DRIVEN SIMULATION

O
l.Priority queue of Events PQ

—PQ .isEmpty()
3. PQ.removeMin().process()

!
[p

N
\

O

(

b

EVENT DRIVEN SIMULATION
POSSIBLE CLASS HIERARCHY

