
CH. 2
OBJECT-ORIENTED
PROGRAMMING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

OBJECT-ORIENTED DESIGN PRINCIPLES

• Object Oriented Programming – paradigm for programming involving

modularizing code into self contained objects that are a concise and

consistent view of a “thing” without exposing unnecessary detail like the inner

workings of the object

• Abstraction – What makes up an object? The model

• Composition – Objects can own other objects, "has-a" relationships

• Encapsulation – Hiding implementation details, only exposing the "public interface"

• Inheritance – Types and subtypes, "is-a" relationships

• Polymorphism – Provision of a single interface to entities of

different types

OBJECT-ORIENTED DESIGN PRINCIPLES

GOALS

• Robustness

• We want software to be capable of

handling unexpected inputs that are not

explicitly defined for its application.

• Adaptability

• Software needs to be able to evolve over

time in response to changing conditions in

its environment.

• Reusability

• The same code should be usable as a

component of different systems in various

applications.

OBJECT-ORIENTED SOFTWARE DESIGN

• Responsibilities

• Divide the work into different actors, each with a different responsibility.

• Independence

• Define the work for each class to be as independent from other classes as possible.

• Behaviors

• Define the behaviors for each class carefully and precisely, so that the consequences of

each action performed by a class will be well understood by other classes that interact

with it.

CRASH COURSE IN USING AND MAKING OBJECTS

REVIEW OF CMSC 150

TERMINOLOGY

• Object type, i.e., class – specifies instance variables, also known as data

members, that the object contains, as well as the methods, also known as

member functions, that the object can execute

• Object instance, i.e. object – variable of that object type

USING A CLASS (QUICK AND DIRTY REFRESHER)

• Initialize a variable of an object with the keyword new followed by a call to

a constructor of the object:

String s = new String(“Hello”);

• Use a method of the class to execute a computation:

int l = s.length();

CLASS DEFINITIONS

• A class serves as the primary means for abstraction in object-oriented

programming.

• Data fields, i.e., members – defines the state of an object instance and its

size/layout in memory

• Can be primitive types or other objects (composition – "has-a" relationship)

• Member functions, i.e., methods – set of behaviors that act upon the state of

an object instance

CLASS TEMPLATE (QUICK AND DIRTY REFRESHER)

1. public class ClassName {

2. /* All instance variables declared private*/

3. private int i = 0;

4. /* Any public static final variables – these model constants */

5. /* All constructors – constructors initialize all member data,

and must be named the same as the class */

6. public ClassName() {}

7. /* All accessor (getters) and simple modifiers (setters) needed

for the object */

8. public int getI() {return i;}

9. public int setI(int i) {this.i = i;}

10. /* All other public methods */

11. /* Any and all private methods */

12. /* Any and all static methods */

13.}

EXAMPLE

• Lets program (in pairs) a class for a bank account, Account.java

• Have getters and setters for private member data (name and balance)

• Have a deposit and withdrawal method to operate on an account

• Program a simple test to exercise all of the methods of Account

ABSTRACT DATA TYPES

ABSTRACT DATA TYPES

• Abstraction is to distill a system to its most fundamental parts.

• An abstract data type (ADT) is a model of a data structure that specifies the

type of data stored, the operations supported on them, and the types of

parameters of the operations.

• This would essentially be the “public interface” of a class

• An ADT specifies what each operation does, but not how it does it

• Lets repeat, an ADT is the operations not the implementation!

• We will see that we can implement ADTs in many, many ways

NESTED CLASSES

• Java allows a class definition to be nested

inside the definition of another class.

• The main use is in defining a class that is

strongly affiliated with another class to

increase encapsulation

• Nested classes are a valuable technique

when implementing data structures. A

instance of the nested class could represent:

• A small portion of the larger data structure

• An auxiliary class to help navigation of the

data structure.

public class A {

// Can be public or private

// Can be static or non-

static

public class B {

}

// We will use this form

// most often

private static class C {

}

}

INHERITANCE

MOTIVATIONS

• Suppose you will want to model objects for shapes. Many of the objects will have

common features, maybe colors, or the ability to compute their areas, or computing

overlap between them. BUT, is there a way to reduce the amount of repeated code?

Improve the robustness (correctness) of the model? Design this type of model

hierarchy?

• How about an example of allied characters in a game? Some help you by healing,

some help offensively, some help defensively. However, all of these types of allies

have commonality. So the same questions exist!

• The answer is to use inheritance – modeling

types and subtypes in a way that reduces

duplicated components

INHERITANCE

• Inheritance is a type/sub-type

relationship (parent/child) denoted with

an arrow pointed to the type in a UML

diagram

• A superclass (base class) is the inherited

object type

• A subclass (derived class) is the

inheriting object type

• All of the state (data fields) and

behavior (methods) of the superclass is

inherited (“handed-down”) to the subclass

• The superclass constructors are NOT

inherited

GeometricObject

- color: String

+ GeometricObject(color: String)

+ getColor(): String

+ setColor(color: String): void

+getArea(): double

Circle

- radius: double

+ Circle(color: String, radius: double)

+ getRadius(): double

+ setRadius(radius: double): void

+ getArea(): double

INHERITANCE IN JAVA

1. public class A {

2. private int a;

3. }

4. public class B extends A {

5. private int b;

6. }

• In Java, the keyword extends

denotes an inheritance relationship

• In this example, by inheritance B is an

object whose state is defined by two

ints, the one in A and the one in B

• In this relationship, the superclass is

responsible for constructing (initializing)

the superclass’s data fields, while the

subtype is responsible for the subclass’s

data fields

int a

int a int b

Object of type A

Object of type B

Memory

A

B

CONSTRUCTION IN INHERITANCE

• The superclass constructor is not inherited, so how

do we construct it’s part of memory?

• They are invoked explicitly (by the programmer)

or implicitly (by the Java compiler)

• We use the super keyword to invoke

explicitely

• The Java compiler will always attempt to invoke

the no-arg constructor implicitely

• Caveats:

• We must use the keyword super, otherwise error

• It must be the very first line of the constructor,

otherwise error

• Explicitely:

public B() {

super(); //note this is like any

//constructor, we are

//free to pass

//parameters as well!

}

• Implicitely:

public B() {

//java inserts super() – always

//calling the no-arg constructor

}

SUPER

• A reference to the superclass

• Synonymous to this

• Can be used to

• Call superclass constructor

• Call methods/data fields of superclass

1. public class A {

2. int x;

3. public A(int a) {x = a;}

4. public void printA() {System.out.print(x);}

5. }

6. public class B extends A {

7. int y;

8. public B(int a, int b) {

9. super(a); //Example of construction

10. y = b;

11. }

12. public void printB() {

13. super.printA(); //Example of method

//invocation

14. System.out.print(", " + y);

15. }

16.}

DEFINING A SUBCLASS

• A subclass inherits from a superclass. You can also:

• Add new properties

• Add new methods

• Override the methods of the superclass

• Conceptually a subclass represents a smaller set of things, so we make our

subclass more detailed to model this

Super

Sub

OVERRIDING

• A subclass inherits methods from a superclass. Sometimes it is necessary for the

subclass to modify the implementation of a method defined in the superclass.

This is referred to as method overriding.

• Note this is different than method overloading – two functions named

identically with different signatures

OVERRIDING

1. public class Shape {

2. private Color c;

3. /** other parts omitted

4. for brevity */

5. public void draw() {

6. StdDraw.setPenColor(c);

7. }

8. }

1. public class Circle extends Shape {

2. private double x, y;

3. private double radius;

4.
5. /** other parts omitted

6. for brevity */

7. public void draw() {

8. super.draw();

9. StdDraw.filledCircle(

10. x, y, radius);

11. }

12.}

Circle overrides the

implementation of

draw

THE JAVA OBJECT CLASS

• Every class in Java is descended from the class. If no

inheritance is specified when a class is defined, the superclass of the class is

Object.

• Java Object provides for a few basic functions, like toString().

• We will use others as we go.

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

POLYMORPHISM

POLYMORPHISM

• Polymorphism means that a variable of a superclass (supertype) can refer to a

subclass (subtype) object

Shape s = new Circle(5);

• Under the context of polymorphism, the supertype here is the declared type and the

subtype is the actual type

• Polymorphism implies that an object of a subtype can be used wherever its

supertype value is required

WHY WOULD YOU EVER DO THIS?

• Allow types to be defined at runtime, instead of at compile time:

1. Scanner s = new Scanner(System.in);

2. Shape shape = null;

3. String tag = s.next();

4. if(tag.equals(“Circle”)) { //user wants a circle

5. double r = s.nextDouble();

6. shape = new Circle(r, Color.red);

7. }

8. else if(tag.equals(“Rectangle”)) { //User wants a rectangle

9. double w = s.nextDouble(), h = s.nextDouble();

10. shape = new Rectangle(w, h, Color.red);

11.}
12.System.out.println(“Area: ” + shape.area()); //works no matter what!

WHY WOULD YOU EVER DO THIS?

• Arrays can only store one type

1.Circle[] circles; //all circles

2.Rectangle[] rects; //all rectangles

3.Shape[] shapes; //depends on subtypes! Can have

some circles and some rectangles.

WHY WOULD YOU EVER DO THIS?

• Lets say we have an array of Shape shapes then we can do something like:

1.double total = 0;

2.for(int i = 0; i < shapes.length; ++i)

3. total += shapes[i].area(); //Uses specific

4. //instance’s function

5.return total;

POLYMORPHISM DEMO

1. public class PolymorphismDemo {

2. public static void main(String[] args) {

3. m(new Student());

4. m(new Person());

5. m(new Object());

6. }

7. public static void m(Object x) {

8. System.out.println(x.toString());

9. }

10. }

11.
12. class Student extends Person {

13. public String toString() {

14. return "Student";

15. }

16. }

17.
18. class Person {

19. public String toString() {

20. return "Person";

21. }

22. }

• Method m takes a parameter of the Object type.

You can invoke it with any object.

• When the method m(Object x) is executed, the

argument x’s toString method is invoked. Classes

Student, Person, and Object have their own

implementation of the toString method.

• The correct implementation is dynamically determined

by the Java Virtual Machine. This is called dynamic

binding.

• Polymorphism allows superclass methods to be used

generically for a wide range of object arguments (any

possible subclass). This is known as generic

programming.

POLYMORPHISM AND TYPE CONVERSION

• So when assigning a value of a subtype to a variable of a supertype, the conversion

is implicit:

Shape s = new Circle(5); //implicit conversion from Circle to Shape

This is called upcasting.

• When going from a supertype value to a subtype variable, the conversion must be

explicit:

Circle c = (Circle)s; //explicit conversion from Shape to circle

This is called downcasting. This type of casting might not always succeed, why?

THE INSTANCEOF OPERATOR

• Use the instanceof operator to test whether an object is an instance of a

class:

1.Object myObject = new Circle();

2./** Perform downcasting only if myObject

3. is an instance of Circle */

4.if (myObject instanceof Circle) {

5. System.out.println("The circle diameter is " +

6. ((Circle)myObject).getDiameter());

7.}

JAVA.LANG.OBJECT'S EQUALS METHOD

• The equals() method compares the

contents of two objects. The default

implementation of the equals method in the

Object class is as follows:

1. public boolean equals(

2. Object obj) {

3. return this == obj;

4. }

• What is the problem? How do we fix it?
• == for objects compares their memory

addresses, not their values.

• As an example of overriding the method for

our Circle:

1. public boolean equals(

2. Object o) {

3. if (o instanceof Circle) {

4. return radius ==

5. ((Circle)o).radius;

6. }

7. else

8. return false;

9. }

EXAMPLE

• Extend your account model to add two subtypes: one for a checking account

and one for a savings account.

• For the method withdraw in your account super class, override its functionality in checkings

and savings.

• Override the toString() method for the accounts

• Exemplify polymorphism in a main program that allows a user to create an

account and make deposits/withdrawals from it

ADVANCED CONCEPTS OF INHERITANCE

THE PROTECTED VISIBILITY (SCOPE) MODIFIER

• The protected modifier can be applied on data and methods in a class. A

protected data or a protected method in a public class can be accessed by

any class in the same package or its subclasses, even if the subclasses are in a

different package.

Visibility Increases

private, none (if no modifier is used), protected, public

ACCESSIBILITY SUMMARY

Modifier

on members

in a class

Accessed

from the

same class

Accessed

from the

same package

Accessed

from a

subclass

Accessed

from a different

package

public

protected -

default - -

private - - -

VISIBILITY MODIFIERS FULL EXAMPLE

public class C1 {

 public int x;

 protected int y;

 int z;

 private int u;

 protected void m() {

 }

}

public class C2 {

 C1 o = new C1();

 can access o.x;

 can access o.y;

 can access o.z;

 cannot access o.u;

 can invoke o.m();

}

public class C3

 extends C1 {

 can access x;

 can access y;

 can access z;

 cannot access u;

 can invoke m();

}

package p1;

public class C4

 extends C1 {

 can access x;

 can access y;

 cannot access z;

 cannot access u;

 can invoke m();

}

package p2;

public class C5 {

 C1 o = new C1();

 can access o.x;

 cannot access o.y;

 cannot access o.z;

 cannot access o.u;

 cannot invoke o.m();

}

A SUBCLASS CANNOT WEAKEN THE ACCESSIBILITY

• A subclass may override a protected method in its superclass and change its

visibility to public.

• However, a subclass cannot "weaken" the accessibility of a method defined in

the superclass.

• For example, if a method is defined as public in the superclass, it must be defined as

public in the subclass.

THE FINAL MODIFIER

• The final modifier, introduced with variables to define constants, e.g., PI, has

extended meaning in the context of inheritance:

• A final class cannot be extended:

final class Math {

...

}

• The final method cannot be overridden by its subclasses:

public final double getArea() {

return Math.PI*radius*radius;

}

EXCEPTIONS

EXCEPTIONS

• Exceptions are unexpected events that occur during the execution of a program.

• An exception might result due to an unavailable resource, unexpected input from a user, or

simply a logical error on the part of the programmer.

• In Java, exceptions are objects that can be thrown by code that encounters an unexpected

situation.

• An exception may also be caught by a surrounding block of code that “handles” the problem.

• If uncaught, an exception causes the virtual machine to stop executing the program and to

report an appropriate message to the console.

CATCHING EXCEPTIONS

• The general methodology

for handling exceptions is

a try-catch construct in

which a guarded fragment

of code that might throw

an exception is executed.

• If it throws an exception, then that

exception is caught by having the flow of

control jump to a predefined catch block

that contains the code to apply an

appropriate resolution.

• If no exception occurs in the guarded code,

all catch blocks are ignored.

1. …

2. try {

3. /*Code that may

generate exception*/

4. }

5. catch(ExceptionType1 e1) {

6. }

7. catch(ExceptionType2 e2) {

8. }

9. …

THROWING EXCEPTIONS

• Exceptions originate when a piece of Java code finds some sort of problem

during execution and throws an exception object.

• This is done by using the throw keyword followed by an instance of the

exception type to be thrown:

throw new ExceptionType(parameters);

THE THROWS CLAUSE

• When a method is declared, it is possible to explicitly declare, as part of its

signature, the possibility that a particular exception type may be thrown

during a call to that method.

• The syntax for declaring possible exceptions in a method signature relies on

the keyword throws (not to be confused with an actual throw statement).

public static int parseInt(String s)

throws NumberFormatException;

