CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
DEPTH-FIRST SEARCH
DEPTH-FIRST SEARCH

• **Depth-first search (DFS)** is a general technique for traversing a graph

• A DFS traversal of a graph G
 • Visits all the vertices and edges of G
 • Determines whether G is connected
 • Computes the connected components of G
 • Computes a spanning forest of G

• DFS on a graph with n vertices and m edges takes $O(n + m)$ time

• DFS can be further extended to solve other graph problems
 • Find and report a path between two given vertices
 • Find a cycle in the graph

• Depth-first search is to graphs as what Euler tour is to binary trees
DFS ALGORITHM FROM A VERTEX

Algorithm DFS(G, u)

Input: A graph G and a vertex u of G

Output: A collection of vertices reachable from u, with their discovery edges

1. Mark u as visited

2. for each edge e = (u, v) ∈ G.outgoingEdges(u) do

3. if v has not been visited then

4. Record e as a discovery edge for v

5. DFS(G, v)
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge

\[I(A) = \{B, C, D, E\} \]

\[I(A) = \{A, C, F\} \]

\[I(B) = \{A, C, F\} \]

\[I(B) = \{A, C, F\} \]

\[I(C) = \{A, B, D, E\} \]

\[I(C) = \{A, B, D, E\} \]

\[I(C) = \{A, B, D, E\} \]
EXAMPLE

\[
I(C) = \{A, B, D, E\}
\]

\[
I(D) = \{A, C\}
\]

\[
I(E) = \{A, C\}
\]
\[I(C) = \{A, B, D, E\} \]
\[I(B) = \{A, C, F\} \]
\[I(G) = \emptyset \]
\[I(F) = \{B\} \]
\[I(B) = \{A, C, F\} \]
\[I(A) = \{A, B, C, D\} \]
EXERCISE
DFS ALGORITHM

• Perform DFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited
 • Label edges as discovery or back edges
The DFS algorithm is similar to a classic strategy for exploring a maze:
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm DFS(G)
Input: Graph G
Output: Labeling of the edges of G as discovery edges and back edges
1. for each v ∈ G.vertices() do
2. setLabel(v, UNEXPLORED)
3. for each e ∈ G.edges() do
4. setLabel(e, UNEXPLORED)
5. for each v ∈ G.vertices() do
6. if getLabel(v) = UNEXPLORED then
7. DFS(G, v)

Algorithm DFS(G, v)
Input: Graph G and a start vertex v
Output: Labeling of the edges of G in the connected component of v as discovery edges and back edges
1. setLabel(v, VISITED)
2. for each e ∈ G.outgoingEdges(v) do
3. if getLabel(e) = UNEXPLORED
4. w ← G.opposite(v, e)
5. if getLabel(w) = UNEXPLORED then
6. setLabel(e, DISCOVERY)
7. DFS(G, w)
8. else
9. setLabel(e, BACK)
PROPERTIES OF DFS

• Property 1
 • DFS\((G, v)\) visits all the vertices and edges in the connected component of \(v\)

• Property 2
 • The discovery edges labeled by DFS\((G, v)\) form a spanning tree of the connected component of \(v\)
ANALYSIS OF DFS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as UNEXPLORED
 • once as VISITED

• Each edge is labeled twice
 • once as UNEXPLORED
 • once as DISCOVERY or BACK

• Function $\text{DFS}(G, v)$ and the method $\text{outgoingEdges}()$ are called once for each vertex

• DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \deg(v) = 2m$
APPLICATION

PATH FINDING

- We can specialize the DFS algorithm to find a path between two given vertices \(u \) and \(z \) using the template method pattern
- We call DFS\((G, u)\) with \(u \) as the start vertex
- We use a stack \(S \) to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex \(z \) is encountered, we return the path as the contents of the stack

Algorithm pathDFS\((G, v, z)\)

1. setLabel\((v, \text{VISITED})\)
2. \(S.\text{push}(v) \)
3. if \(v = z \)
4. return \(S.\text{elements}() \)
5. for each \(e \in G.\text{outgoingEdges}(v) \) do
6. if getLabel\((e) = \text{UNEXPLORRED} \) then
7. \(w \leftarrow G.\text{opposite}(v, e) \)
8. if getLabel\((w) = \text{UNEXPLORRED} \) then
9. setLabel\((e, \text{DISCOVERY})\)
10. \(S.\text{push}(e) \)
11. pathDFS\((G, w) \)
12. \(S.\text{pop}() \)
13. else
14. setLabel\((e, \text{BACK})\)
15. \(S.\text{pop}() \)
APPLICATION
CYCLE FINDING

• We can specialize the DFS algorithm to find a simple cycle using the template method pattern
• We use a stack \(S \) to keep track of the path between the start vertex and the current vertex
• As soon as a back edge \((v, w)\) is encountered, we return the cycle as the portion of the stack from the top to vertex \(w \)

Algorithm cycleDFS(\(G, v \))
1. `setLabel(v, VISITED)`
2. \(S.push(v) \)
3. for each \(e \in G.\text{outgoingEdges}(v) \) do
4. if `getLabel(e) = UNEXPLORED` then
5. \(w \leftarrow G.\text{opposite}(v, e) \)
6. \(S.push(e) \)
7. if `getLabel(w) = UNEXPLORED` then
8. `setLabel(e, DISCOVERY)`
9. cycleDFS(\(G, w \))
10. \(S.pop() \)
11. else
12. \(T \leftarrow \text{empty stack} \)
13. repeat
14. \(T.push(S.pop()) \)
15. until \(T.top() = w \)
16. return \(T.\text{elements()} \)
17. \(S.pop() \)
DIRECTED DFS

• We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.

• In the directed DFS algorithm, we have four types of edges:
 - discovery edges
 - back edges
 - forward edges
 - cross edges

• A directed DFS starting at a vertex s determines the vertices reachable from s.
REACHABILITY

• DFS tree rooted at v: vertices reachable from v via directed paths
STRONG CONNECTIVITY

• Each vertex can reach all other vertices
STRONG CONNECTIVITY ALGORITHM

- Pick a vertex v in G
- Perform a DFS from v in G
 - If there's a w not visited, print “no”
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a w not visited, print “no”
 - Else, print “yes”
- Running time: $O(n + m)$
STRONGLY CONNECTED COMPONENTS

• Maximal subgraphs such that each vertex can reach all other vertices in the subgraph

• Can also be done in $O(n + m)$ time using DFS, but is more complicated (similar to biconnectivity).

{ a, c, g }
{ f, d, e, b }
BREADTH-FIRST SEARCH
BREADTH-FIRST SEARCH

- **Breadth-first search (BFS)** is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $O(n + m)$ time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one
BFS ALGORITHM

- The algorithm uses a mechanism for setting and getting “labels” of vertices and edges

Algorithm BFS(G)

Input: Graph G

Output: Labeling of the edges and partition of the vertices of G

1. for each v ∈ G.vertices() do
2. setLabel(v, UNEXPLORRED)
3. for each e ∈ G.edges() do
4. setLabel(e, UNEXPLORRED)
5. for each v ∈ G.vertices() do
6. if getLabel(v) = UNEXPLORRED then
7. BFS(G,v)

Algorithm BFS(G,s)

1. \(L_0 \leftarrow \{s\} \)
2. setLabel(s, VISITED)
3. \(i \leftarrow 0 \)
4. while \(\neg L_i \cdot \text{isEmpty}() \) do
5. \(L_{i+1} \leftarrow \emptyset \)
6. for each \(v \in L_i \) do
7. for each \(e \in G.\text{outgoingEdges}(v) \) do
8. if getLabel(e) = UNEXPLORRED then
9. \(w \leftarrow G.\text{opposite}(v,e) \)
10. if getLabel(w) = UNEXPLORRED then
11. setLabel(e, DISCOVERY)
12. setLabel(w, VISITED)
13. \(L_{i+1} \leftarrow L_{i+1} \cup \{w\} \)
14. else
15. setLabel(e, CROSS)
16. \(i \leftarrow i + 1 \)
EXAMPLE

unexplored vertex
visited vertex
unexplored edge
discovery edge
cross edge
EXERCISE
BFS ALGORITHM

• Perform BFS of the following graph, start from vertex A
 • Assume adjacent edges are processed in alphabetical order
 • Number vertices in the order they are visited and note the level they are in
 • Label edges as discovery or cross edges
PROPERTIES

• Notation
 • G_s: connected component of s

• Property 1
 • BFS(G, s) visits all the vertices and edges of G_s

• Property 2
 • The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

• Property 3
 • For each vertex $v \in L_i$
 • The path of T_s from s to v has i edges
 • Every path from s to v in G_s has at least i edges
ANALYSIS

• Setting/getting a vertex/edge label takes $O(1)$ time

• Each vertex is labeled twice
 • once as UNEXPLORED
 • once as VISITED

• Each edge is labeled twice
 • once as UNEXPLORED
 • once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence L_i

• Method outgoingEdges() is called once for each vertex

• BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 • Recall that $\Sigma_v \deg(v) = 2m$
APPLICATIONS

• Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time

 • Compute the connected components of G
 • Compute a spanning forest of G
 • Find a simple cycle in G, or report that G is a forest
 • Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS VS. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Applications
- **DFS**: Spanning forest, connected components, paths, cycles, shortest paths, biconnected components.
- **BFS**: Spanning forest, connected components, paths, cycles, biconnected components.
DFS VS. BFS

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level in the tree of discovery edges
TOPOLOGICAL ORDERING
A directed acyclic graph (DAG) is a digraph that has no directed cycles.

A topological ordering of a digraph is a numbering

\[v_1, \ldots, v_n \]

Of the vertices such that for every edge \((v_i, v_j)\), we have \(i < j\).

Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints.

Theorem - A digraph admits a topological ordering if and only if it is a DAG.
APPLICATION

• Scheduling: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started
EXERCISE
TOPOLOGICAL SORTING

• Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)
EXERCISE

TOPOLOGICAL SORTING

- Number vertices, so that \((u, v)\) in \(E\) implies \(u < v\)
Algorithm for Topological Sorting

Algorithm TopologicalSort(G)
1. \(H \leftarrow G \)
2. \(n \leftarrow G\).numVertices()
3. while \(H\).isEmpty() do
4. Let \(v \) be a vertex with no outgoing edges
5. Label \(v \leftarrow n \)
6. \(n \leftarrow n - 1 \)
7. \(H\).removeVertex\((v) \)
IMPLEMENTATION WITH DFS

• Simulate the algorithm by using depth-first search
• \(O(n + m)\) time.

Algorithm `topologicalDFS(G)`
Input: DAG `G`
Output: Topological ordering of `G`

1. `n ← G.numVertices()`
2. Initialize all vertices as `UNEXPLORED`
3. for each vertex `v ∈ G.vertices()` do
 4. if `getLabel(v) = UNEXPLORED` then
 5. `topologicalDFS(G, v)`

Algorithm `topologicalDFS(G, v)`
Input: DAG `G`, start vertex `v`
Output: Labeling of the vertices of `G` in the connected component of `v`

1. `setLabel(v, VISITED)`
2. for each `e ∈ G.outgoingEdges(v)` do
 3. `w ← G.opposite(v, e)`
 4. if `getLabel(w) = UNEXPLORED` then
 5. // `e` is a discovery edge
 6. `topologicalDFS(G, w)`
 7. else
 8. // `e` is a forward, cross, or back edge
 9. Label `v` with topological number `n`
10. `n ← n − 1`
TOPOLOGICAL SORTING EXAMPLE
TOPOLOGICAL SORTING EXAMPLE