CHAPTER 11
SEARCH TREES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
A binary search tree is a binary tree storing entries \((k, e)\) (i.e., key-value pairs) at its internal nodes and satisfying the following property:

- Let \(u, v,\) and \(w\) be three nodes such that \(u\) is in the left subtree of \(v\) and \(w\) is in the right subtree of \(v\). Then \(key(u) \leq key(v) \leq key(w)\)

- External nodes do not store items

An inorder traversal of a binary search trees visits the keys in increasing order
SEARCH

• To search for a key \(k \), we trace a downward path starting at the root.
• The next node visited depends on the outcome of the comparison of \(k \) with the key of the current node.
• If we reach a leaf, the key is not found.
• Example: \text{get(4)}
 • Call \text{Search(4, root)}
• Algorithms for nearest neighbor queries are similar.

\[
\text{Algorithm Search}(k, v) \\
\text{Input:} \text{ Key } k, \text{ node } v \\
\text{Output:} \text{ Node with key } = k \\
1. \text{ if } v.\text{isExternal}() \\
2. \quad \text{return } v \\
3. \quad \text{ if } k < v.\text{key}() \\
4. \quad \quad \text{return } \text{Search}(k, v.\text{left}()) \\
5. \quad \text{ else if } k = v.\text{key}() \\
6. \quad \quad \text{return } v \\
7. \quad \text{ else } // k > v.\text{key}() \\
8. \quad \quad \text{return } \text{Search}(k, v.\text{right}())
\]
INSERTION

• To perform operation $\text{put}(k, v)$, we search for key k (using $\text{Search}(k)$)

• Assume k is not already in the tree, and let w be the leaf reached by the search

• We insert k at node w and expand w into an internal node

• Example: insert 5
EXERCISE
BINARY SEARCH TREES

• Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
 • 30, 40, 24, 58, 48, 26, 11, 13
DELETION

• To perform operation \texttt{remove}(k), we search for key \(k \)

• Assume key \(k \) is in the tree, and let \(v \) be the node storing \(k \)

• If node \(v \) has a leaf child \(w \), we remove \(v \) and \(w \) from the tree with operation \texttt{removeExternal}(w), which removes \(w \) and its parent

• Example: remove 4
DELETION (CONT.)

• We consider the case where the key k to be removed is stored at a node v whose children are both internal
 • we find the internal node w that follows v in an inorder traversal
 • we copy $w.key()$ into node v
 • we remove node w and its left child z (which must be a leaf) by means of operation removeExternal(z)

• Example: remove 3
EXERCISE
BINARY SEARCH TREES

• Insert into an initially empty binary search tree items with the following keys (in this order). Draw the resulting binary search tree
 • 30, 40, 24, 58, 48, 26, 11, 13
• Now, remove the item with key 30. Draw the resulting tree
• Now remove the item with key 48. Draw the resulting tree.
PERFORMANCE

• Consider an ordered map with \(n \) items implemented by means of a binary search tree of height \(h \)
 • Space used is \(O(n) \)
 • Methods \(\text{get}(k), \text{put}(k, v), \) and \(\text{remove}(k) \) take \(O(h) \) time

• The height \(h \) is \(O(n) \) in the worst case and \(O(\log n) \) in the best case
AVL TREES
AVL TREE DEFINITION

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes:
HEIGHT OF AN AVL TREE

• Fact: The height of an AVL tree storing n keys is $O(\log n)$.
• Proof: Let us bound $n(h)$: the minimum number of internal nodes of an AVL tree of height h.
 • We easily see that $n(1) = 1$ and $n(2) = 2$
 • For $n > 2$, an AVL tree of height h contains the root node, one AVL subtree of height $h - 1$ and another of height $h - 2$.
 • That is, $n(h) = 1 + n(h - 1) + n(h - 2)$
 • Knowing $n(h - 1) > n(h - 2)$, we get $n(h) > 2n(h - 2)$. So
 • $n(h) > 2n(h - 2) > 4n(h - 4) > 8n(n - 6), ...$ (by induction),
 • $n(h) > 2^i n(h - 2i)$
 • Solving the base case we get: $n(h) > 2^{\frac{h}{2} - 1}$
 • Taking logarithms: $h < 2 \log n(h) + 2$
 • Thus the height of an AVL tree is $O(\log n)$
INSERTION IN AN AVL TREE

• Insertion is as in a binary search tree
• Always done by expanding an external node.
• Example insert 54:

```
Before Insertion

44
 /   \
|     |
17    78
 /   |   /
|     |   |   
32  50  88
   |   |   |
48  62  62

After Insertion

44
 /   \
|     |
17    78
 /   |   /
|     |   |   
32  50  88
   |   |   |
48  62  54
   |   |   |
48  62  62
```
TRINODE RESTRUCTURING

- let \((a, b, c)\) be an inorder listing of \(x, y, z\)
- perform the rotations needed to make \(b\) the topmost node of the three

case 1: single rotation
(a left rotation about \(a\))

case 2: double rotation
(a right rotation about \(c\), then a left rotation about \(a\))

(other two cases are symmetrical)
INSERTION EXAMPLE, CONTINUED

unbalanced...

...balanced
RESTRUCTURING
SINGLE ROTATIONS

\[
\begin{align*}
T_0 &\quad a = z \\
T_1 &\quad b = y \\
T_2 &\quad c = x \\
T_3 &
\end{align*}
\]

\[
\begin{align*}
T_0 &\quad a = z \\
T_1 &\quad b = y \\
T_2 &\quad c = x \\
T_3 &
\end{align*}
\]

\[
\begin{align*}
T_0 &\quad a = x \\
T_1 &\quad b = y \\
T_2 &\quad c = z \\
T_3 &
\end{align*}
\]

\[
\begin{align*}
T_0 &\quad a = x \\
T_1 &\quad b = y \\
T_2 &\quad c = z \\
T_3 &
\end{align*}
\]
RESTRUCTURING
DOUBLE ROTATIONS

Double rotation

\[a = z \]
\[b = x \]
\[c = y \]

\[T_0 \]
\[T_2 \]
\[T_3 \]

Double rotation

\[a = z \]
\[b = x \]
\[c = y \]

\[T_0 \]
\[T_1 \]
\[T_2 \]
\[T_3 \]

Double rotation

\[a = y \]
\[b = x \]
\[c = z \]

\[T_0 \]
\[T_2 \]
\[T_3 \]

Double rotation

\[a = y \]
\[b = x \]
\[c = z \]

\[T_3 \]
\[T_2 \]
\[T_1 \]
\[T_0 \]
EXERCISE
AVL TREES

• Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree
 • 30, 40, 24, 58, 48, 26, 11, 13
REMOVAL IN AN AVL TREE

• Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, \(w \), may cause an imbalance.

• Example:

```
        44
       /   \
      17    62
     /       \
    32       78
   /         /   \
  50     48     88
```

before deletion of 32

```
        44
       /   \
      17    62
     /       \
    50     78
   /         /   \
  48     54     88
```

after deletion
REBALANCING AFTER A REMOVAL

• Let z be the first unbalanced node encountered while travelling up the tree from w (parent of removed node). Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

• We perform $\text{restructure}(x)$ to restore balance at z.
Rebalancing After a Removal

- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.
 - This can happen at most $O(\log n)$ times. Why?
EXERCISE
AVL TREES

• Insert into an initially empty AVL tree items with the following keys (in this order). Draw the resulting AVL tree
 • 30, 40, 24, 58, 48, 26, 11, 13
• Now, remove the item with key 48. Draw the resulting tree
• Now, remove the item with key 58. Draw the resulting tree
RUNNING TIMES FOR AVL TREES

• A single restructure is $O(1)$ — using a linked-structure binary tree
• $\text{get}(k)$ takes $O(\log n)$ time — height of tree is $O(\log n)$, no restructures needed
• $\text{put}(k, v)$ takes $O(\log n)$ time
 • Initial find is $O(\log n)$
 • Restructuring up the tree, maintaining heights is $O(\log n)$
• $\text{remove}(k)$ takes $O(\log n)$ time
 • Initial find is $O(\log n)$
 • Restructuring up the tree, maintaining heights is $O(\log n)$
• **Splay Trees** – A binary search tree which uses an operation `splay(x)` to allow for amortized complexity of $O(\log n)$

• **(2, 4) Trees** – A multiway search tree where every node stores internally a list of entries and has 2, 3, or 4 children. Defines self-balancing operations

• **Red-Black Trees** – A binary search tree which colors each internal node red or black. Self-balancing dictates changes of colors and required rotation operations