CH9.
PRIORITY QUEUES

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)
PRIORITY QUEUES

• Stores a collection of elements each with an associated “key” value
 • Can insert as many elements in any order
 • Only can inspect and remove a single element – the minimum (or maximum depending) element

• Applications
 • Standby Flyers
 • Auctions
 • Stock market
PRIORITY QUEUE ADT

• A priority queue stores a collection of entries
• Each entry is a pair (key, value)
• Main methods of the Priority Queue ADT
 • `insert(k, v)` inserts an entry with key k and value v
 • `removeMin()` removes and returns the entry with smallest key, or null if the priority queue is empty

• Additional methods
 • `min()` returns, but does not remove, an entry with smallest key, or null if the priority queue is empty
 • `size()`, `isEmpty()`
TOTAL ORDER RELATION

• Keys in a priority queue can be arbitrary objects on which an order is defined, e.g., integers

• Two distinct items in a priority queue can have the same key

• Mathematical concept of total order relation \leq

 • Reflexive property: $k \leq k$

 • Antisymmetric property: if $k_1 \leq k_2$ and $k_2 \leq k_1$, then $k_1 = k_2$

 • Transitive property: if $k_1 \leq k_2$ and $k_2 \leq k_3$ then $k_1 \leq k_3$
ENTRY ADT

• An entry in a priority queue is simply a key-value pair

• Priority queues store entries to allow for efficient insertion and removal based on keys

• Methods:
 • `getKey`: returns the key for this entry
 • `getValue`: returns the value associated with this entry
COMPARATOR ADT

• A comparator encapsulates the action of comparing two objects according to a given total order relation

• A generic priority queue uses an auxiliary comparator

• The comparator is external to the keys being compared

• When the priority queue needs to compare two keys, it uses its comparator

• Primary method of the Comparator ADT

 \text{compare}(x, y): \text{return} \text{a} \text{integer} \ i \ \text{such that}

 • \ i < 0 \ \text{if} \ x < y,
 • \ i = 0 \ \text{if} \ x = y
 • \ i > 0 \ \text{if} \ x > y

 \text{An error occurs if a and b cannot be compared.}
We can use a priority queue to sort a set of comparable elements.

Insert the elements one by one with a series of insert(e) operations.

Remove the elements in sorted order with a series of removeMin() operations.

Running time depends on the PQ implementation.

Algorithm PriorityQueueSort()
Input: List L storing n elements and a Comparator C
Output: Sorted List L

1. Priority Queue P using comparator C
2. while ¬L.empty() do
3. P.insert(L.front())
4. L.eraseFront()
5. while ¬P.empty() do
6. L.insertBack(P.min())
7. P.removeMin()
8. return L
LIST-BASED PRIORITY QUEUE

Unsorted list implementation
• Store the items of the priority queue in a list, in arbitrary order

1 2 3 4 5

• Performance:
 • `insert(e)` takes $O(1)$ time since we can insert the item at the beginning or end of the list
 • `removeMin()` and `min()` take $O(n)$ time since we have to traverse the entire sequence to find the smallest key

Sorted list implementation
• Store the items of the priority queue in a list, sorted by key

1 2 3 4 5

• Performance:
 • `insert(e)` takes $O(n)$ time since we have to find the place where to insert the item
 • `removeMin()` and `min()` take $O(1)$ time since the smallest key is at the beginning of the list
• Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list

\[\begin{align*}
4 & \quad 5 & \quad 2 & \quad 3 & \quad 1 \\
\end{align*} \]

• Running time of Selection-sort:
 • Inserting the elements into the priority queue with \(n \text{ insert}(e) \) operations takes \(O(n) \) time
 • Removing the elements in sorted order from the priority queue with \(n \text{ removeMin}() \) operations takes time proportional to

\[
\sum_{i=0}^{n} n - i = n + (n - 1) + \cdots + 2 + 1 = O(n^2)
\]

• Selection-sort runs in \(O(n^2) \) time
EXERCISE
SELECTION-SORT

• Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list (do n insert(e) and then n removeMin())

• Illustrate the performance of selection-sort on the following input sequence:
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted List

• Running time of Insertion-sort:
 • Inserting the elements into the priority queue with $n \text{insert}(e)$ operations takes time proportional to

$$
\sum_{i=0}^{n} i = 1 + 2 + \cdots + n = O(n^2)
$$

 • Removing the elements in sorted order from the priority queue with a series of $n \text{removeMin}()$ operations takes $O(n)$ time

• Insertion-sort runs in $O(n^2)$ time
EXERCISE
INSERTION-SORT

• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted list (do $n \text{ insert}(e)$ and then $n \text{ removeMin}()$)

1 2 3 4 5

• Illustrate the performance of insertion-sort on the following input sequence:
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
IN-PLACE INSERTION-SORT

- Instead of using an external data structure, we can implement selection-sort and insertion-sort in-place (only $O(1)$ extra storage)
- A portion of the input list itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the list
 - We can use $\text{swap}(i, j)$ instead of modifying the list
HEAPS
WHAT IS A HEAP?

• A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 • **Heap-Order:** for every node \(v \) other than the root, \(\text{key}(v) \geq \text{key}(v.\text{parent}) \)
 • **Complete Binary Tree:** let \(h \) be the height of the heap
 • for \(i = 0 \) \(\ldots h - 1 \), there are \(2^i \) nodes on level \(i \)
 • at level \(h - 1 \), nodes are filled from left to right

• Can be used to store a priority queue efficiently
HEIGHT OF A HEAP

- **Theorem:** A heap storing n keys has height $O(\log n)$
- **Proof:** (we apply the complete binary tree property)
 - Let h be the height of a heap storing h keys
 - Since there are 2^i keys at level $i = 0 \ldots h - 1$ and at least one key on level h, we have
 $$n \geq 1 + 2 + 4 + \cdots + 2^{h-1} + 1 = (2^h - 1) + 1 = 2^h$$
 - Level h has at most 2^h nodes: $n \leq 2^{h+1} - 1$
 - Thus, $\log(n + 1) - 1 \leq h \leq \log n$ ■
EXERCISE
HEAPS

• Let H be a heap with 7 distinct elements (1, 2, 3, 4, 5, 6, and 7). Is it possible that a preorder traversal visits the elements in sorted order? What about an inorder traversal or a postorder traversal? In each case, either show such a heap or prove that none exists.
INSERTION INTO A HEAP

- \textit{insert}(e) consists of three steps:
 - Find the insertion node \(z \) (the new last node)
 - Store \(e \) at \(z \) and expand \(z \) into an internal node
 - Restore the heap-order property (discussed next)
UPHEAP

• After the insertion of a new element e, the heap-order property may be violated

• Up-heap bubbling restores the heap-order property by swapping e along an upward path from the insertion node

• Upheap terminates when e reaches the root or a node whose parent has a key smaller than or equal to $\text{key}(e)$

• Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time
REMOVAL FROM A HEAP

• `removeMin()` corresponds to the removal of the root from the heap

• The removal algorithm consists of three steps
 • Replace the root with the element of the last node w
 • Compress w and its children into a leaf
 • Restore the heap-order property (discussed next)
DOWNHEAP

• After replacing the root element of the last node, the heap-order property may be violated

• **Down-heap bubbling** restores the heap-order property by swapping element e along a downward path from the root

• Downheap terminates when e reaches a leaf or a node whose children have keys greater than or equal to key(e)

• Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time
UPDATING THE LAST NODE

- The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached

- Similar algorithm for updating the last node after a removal
HEAP-SORT

• Consider a priority queue with n items implemented by means of a heap
 • the space used is $O(n)$
 • `insert(e)` and `removeMin()` take $O(\log n)$ time
 • `min()`, `size()`, and `empty()` take $O(1)$ time

• Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time

• The resulting algorithm is called heap-sort

• Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort
EXERCISE
HEAP-SORT

• Heap-sort is the variation of PQ-sort where the priority queue is implemented with a heap (do \(n \) insert(e) and then \(n \) removeMin())

• Illustrate the performance of heap-sort on the following input sequence (draw the heap at each step):
 • (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)
ARRAY-BASED HEAP IMPLEMENTATION

- We can represent a heap with n elements by means of a vector of length n
 - Links between nodes are not explicitly stored
 - The leaves are not represented
 - The cell at index 0 is not used
- For the node at index i
 - the left child is at index $2i + 1$
 - the right child is at index $2i + 2$
- $\text{insert}(e)$ corresponds to inserting at index $n + 1$
- $\text{removeMin}()$ corresponds to removing element at index n
- Yields in-place heap-sort
Priority Queue Summary

<table>
<thead>
<tr>
<th></th>
<th>insert(e)</th>
<th>removeMin()</th>
<th>PQ-Sort total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered List (Insertion Sort)</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Unordered List (Selection Sort)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Binary Heap, Vector-based Heap (Heap Sort)</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>
MERGING TWO HEAPS

• We are given two heaps and a new element e
• We create a new heap with a root node storing e and with the two heaps as subtrees
• We perform downheap to restore the heap-order property
We can construct a heap storing \(n \) given elements in using a bottom-up construction with \(\log n \) phases.

In phase \(i \), pairs of heaps with \(2^i - 1 \) elements are merged into heaps with \(2^{i+1} - 1 \) elements.
EXAMPLE
ANALYSIS

• We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).

• Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is $O(n)$.

• Thus, bottom-up heap construction runs in $O(n)$ time.

• Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.
ADAPTABLE PRIORITY QUEUES

• One weakness of the priority queues so far is that we do not have an ability to update individual entries, like in a changing price market or bidding service.

• We incorporate concept of positions to accomplish this (similar to List).

• Additional ADT support (also includes standard priority queue functionality)
 • `insert(e)` – insert element `e` into priority queue and return a position referring to this entry.
 • `remove(p)` – remove the entry referenced by position `p`.
 • `replace(p, e)` – replace with `e` the element associated with position `p` and return the position of the altered entry. Can work with key or value…
LOCATION-AWARE ENTRY

- Locators decouple positions and entries in order to support efficient adaptable priority queue implementations (i.e., in a heap)
- Each position has an associated locator
- Each locator stores a pointer to its position and memory for the entry
POSITIONS VS. LOCATORS

• Position
 • represents a “place” in a data structure
 • related to other positions in the data structure (e.g., previous/next or parent/child)
 • often implemented as a pointer to a node or the index of an array cell

• Position-based ADTs (e.g., sequence and tree) are fundamental data storage schemes

• Locator
 • identifies and tracks a (key, element) item
 • unrelated to other locators in the data structure
 • often implemented as an object storing the item and its position in the underlying structure

• Key-based ADTs (e.g., priority queue) can be augmented with locator-based methods