1. (2 points) Considering lighting techniques, **local illumination** considers interactions between a point and a light source independently from anything else in the scene, whereas **global illumination** includes light interactions from adjacent objects as well.

2. (2 points) Ray tracing computes surface shading by **back-tracing** light rays from the camera into the scene. Radiosity differs in that it propagates **radiant energy** from the light sources into the scene.

3. (2 points) In the basic ray tracing algorithm, at an intersection two secondary rays might be generated: **reflection** rays on reflective surfaces and **refraction** rays on translucent surfaces.

4. (1 point) **True** or False (Circle one): Ray tracing is highly view-dependent.

5. (2 points) In distributed ray tracing, ray placements in subpixels are determined through **jittering**. The same pattern of ray placements is used to generate scattered secondary rays. Also, the same pattern is used when shooting **shadow** rays to enable a penumbra (partial illumination) effect.

6. (1 point) True or **False** (Circle one): In the basic radiosity computation, realistic specular light is modeled.

7. (2 points) Classical Open GL is build upon a **fixed-function** pipeline where preset operations control how an image is rendered. Modern Open GL uses a **programmable** pipeline allowing full control and flexibility over certain computations.

8. (3 points) A **shader** is a program that is execute on the GPU. The type or program responsible for determining a pixels final color is called a(n) **fragment shader**. The type of program typically used just for performing math computations with a GPU is called a(n) **compute shader**.

9. (1 point) **Bonus**. State and accurately describe your favorite computer graphics concept. Individualized.