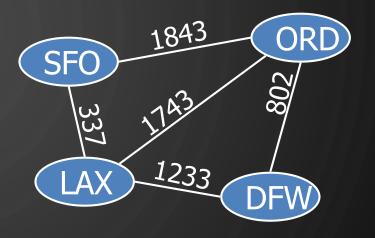
CHAPTER 14 GRAPH ALGORITHMS

Q

0

0

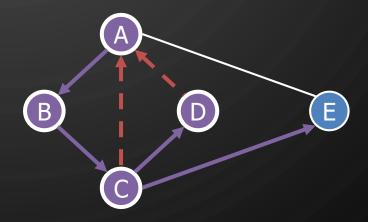


ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

 \bigcirc

 \bigcirc

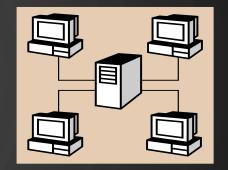
DEPTH-FIRST SEARCH



 \langle

DEPTH-FIRST SEARCH

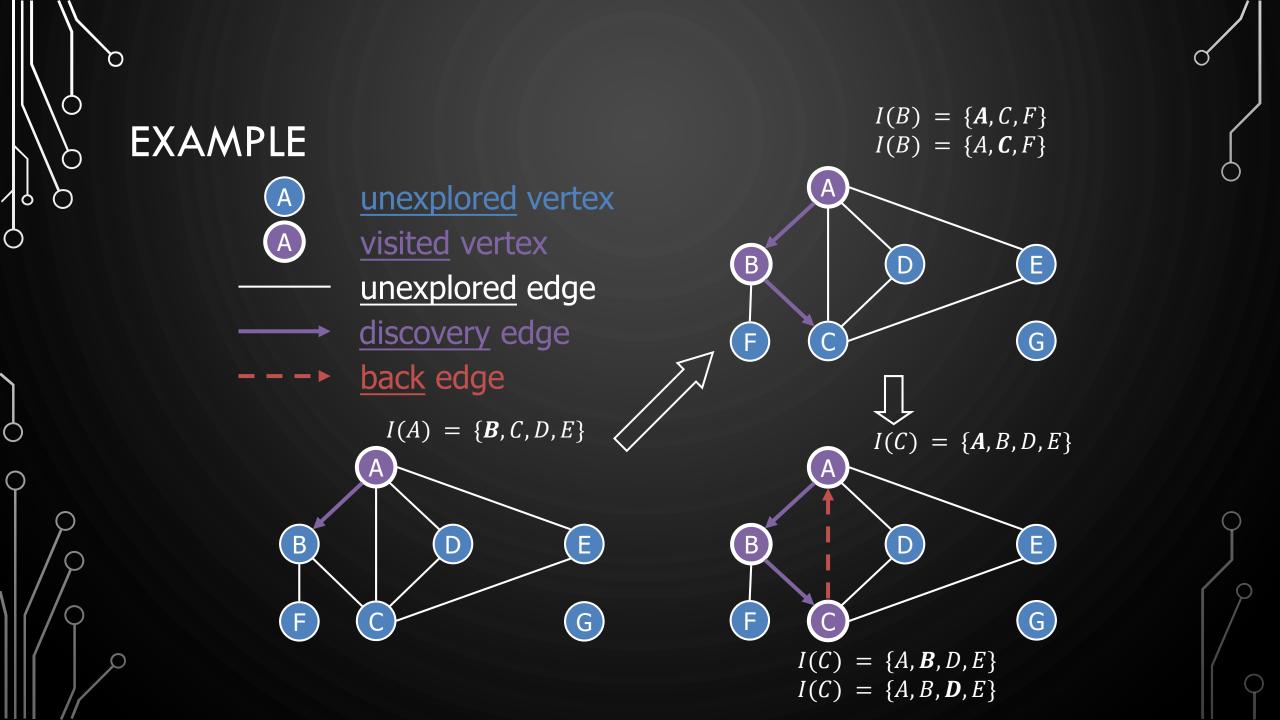
- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

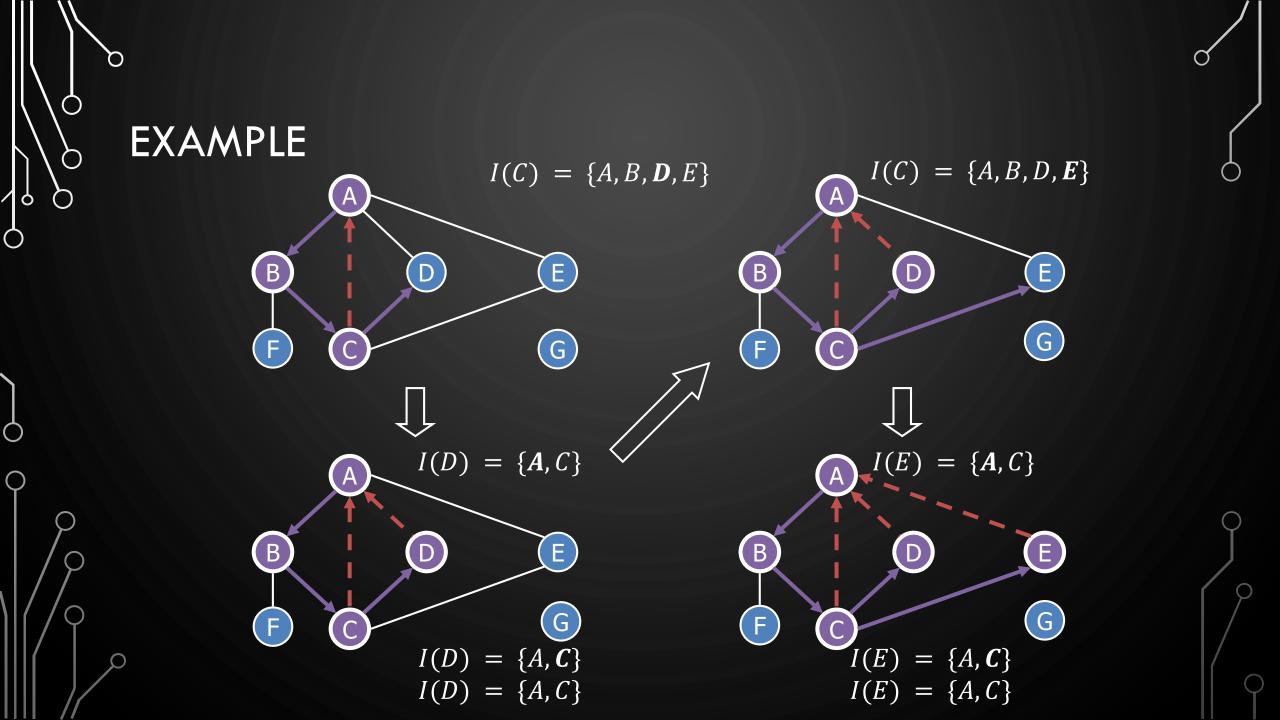


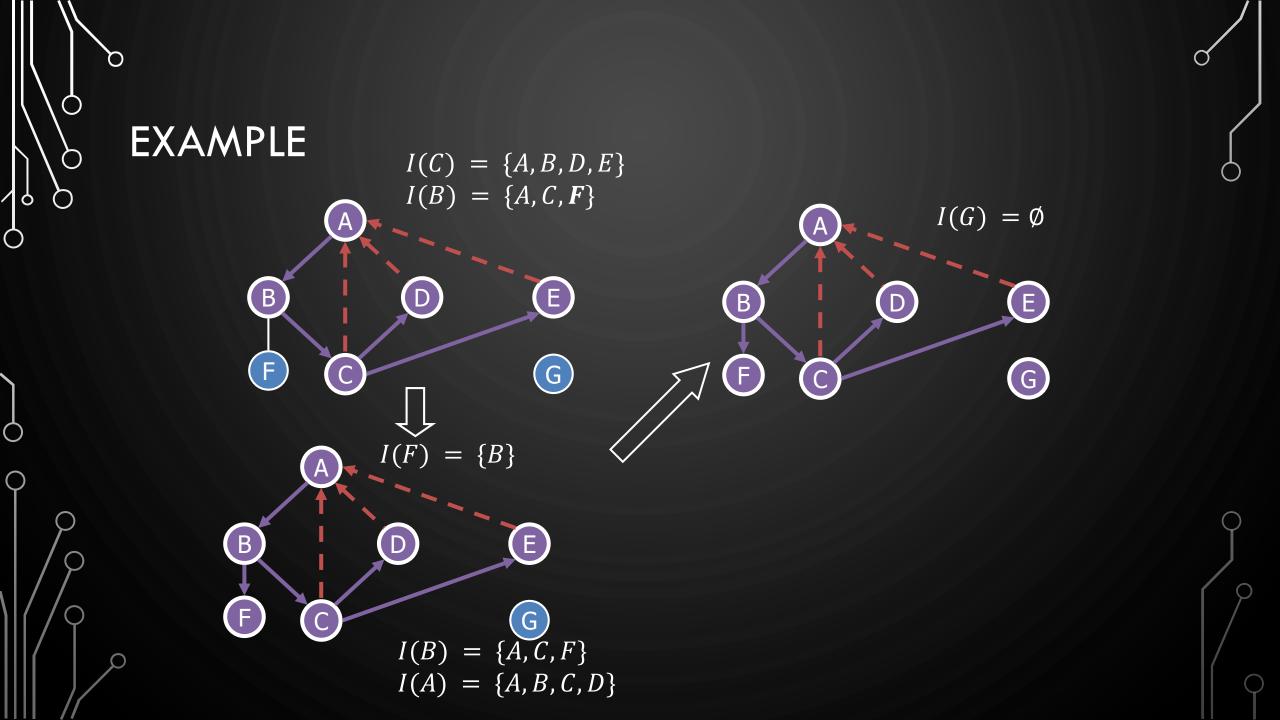
- DFS on a graph with n vertices and medges takes O(n + m) time
- DFS can be further extended to solve other graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs as what Euler tour is to binary trees

DFS ALGORITHM FROM A VERTEX

Algorithm DFS (G, u)**Input:** A graph G and a vertex u of G**Output:** A collection of vertices reachable from $u_{,}$ with their discovery edges 1. Mark u as visited 2. for each edge $e = (u, v) \in G$.outgoingEdges (u) do 3. if v has not been visited then 4. Record e as a discovery edge for v5. DFS(G, v)



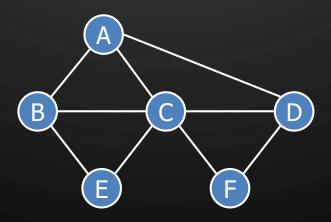




EXERCISE DFS ALGORITHM

Perform DFS of the following graph, start from vertex A

- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited
- Label edges as discovery or back edges

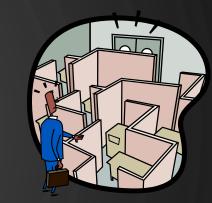


O

 \bigcirc

 \bigcirc

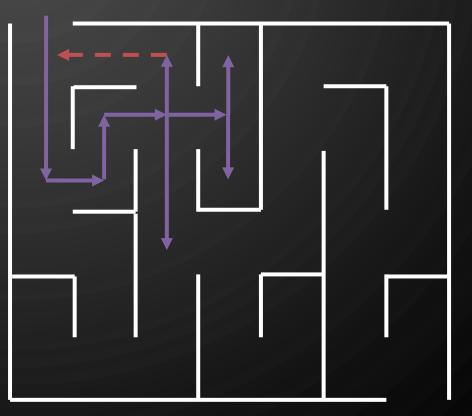
Q



DFS AND MAZE TRAVERSAL

• The DFS algorithm is similar to a classic strategy for exploring a maze

- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)



DFS ALGORITHM

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Q

Algorithm DFS(G) Input: Graph G Output: Labeling of the edges of G as discovery edges and back edges 1. for each $v \in G$.vertices() do 2. setLabel(v, UNEXPLORED) 3. for each $e \in G$.edges() do 4. setLabel(e, UNEXPLORED) 5. for each $v \in G$.vertices() do 6. if getLabel(v) = UNEXPLORED then 7. DFS(G, v)

Algorithm DFS(G, v) **Input:** Graph G and a start vertex v**Output:** Labeling of the edges of G in the connected component of v as discovery edges and back edges 1. setLabel(*v*,*VISITED*) **2.** for each $e \in G$.outgoingEdges(v) do 3. if getLabel(e) = UNEXPLORED) 4. $w \leftarrow G.opposite(v, e)$ 5. **if** getLabel(w) = UNEXPLORED **then** 6. setLabel(e, DISCOVERY) 1. DFS(G, w)8. else 9. setLabel(e, BACK)

PROPERTIES OF DFS

- Property 1
 - DFS(G, v) visits all the vertices and edges in the connected component of v
- Property 2
 - The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

 \mathbf{B}

 \bigcirc

 \bigcirc

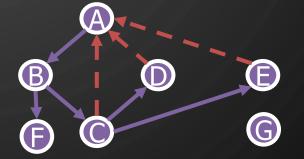
 \bigcirc

6

ANALYSIS OF DFS

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as **VISITED**

- Each edge is labeled twice
 - once as UNEXPLORED
 - once as *DISCOVERY* or *BACK*



- Function DFS(G, v) and the method outgoingEdges() are called once for each vertex
- DFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$

APPLICATION PATH FINDING

 \bigcirc

 \bigcirc

Q

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

Algorithm pathDFS(G, v, z) **Input:** Graph G_{i} , a start vertex v_{i} , a goal vertex z**Output:** Path between v and z1. setLabel(v, VISITED) 2. S. push(v)**return** S.elements() for each $e \in G$.outgoingEdges(v) do 6. if getLabel(e) = UNEXPLORED) then 7. $w \leftarrow G.$ opposite(v, e)8. if getLabel(w) = UNEXPLORED then setLabel(e. DISCOVERY) 9 10. S.push(e) pathDFS(G,w)12. S.pop() 13. else 14. setLabel(e, BACK) 15. S.pop()

APPLICATION CYCLE FINDING

 \bigcirc

 \bigcirc

O

Q

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w

Algorithm cycleDFS(G, v)
Input: Graph G , a start vertex v
Output: Cycle containing v
1. setLabel(v, VISITED)
2. $S.push(v)$
3. for each $e \in G$.outgoingEdges(v) do
4. if getLabel(e) = UNEXPLORED) then
5. $w \leftarrow G.$ opposite (v, e)
6. <i>S</i> .push(<i>e</i>)
7. if getLabel(w) = UNEXPLORED then
8. setLabel(e, DISCOVERY)
9. $cycleDFS(G, w)$
10. S.pop()
11. else
12. Stack $T \leftarrow \emptyset$
13. repeat
14. \overline{T} .push(S.pop())
15. until $T.top() = w$
16. return T.elements()
17. S.pop()

DIRECTED DFS

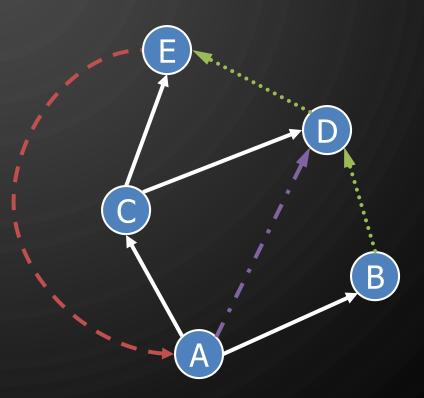
 \bigcirc

 \bigcirc

O

6

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex *s* determines the vertices reachable from *s*



 \mathcal{O}

 \bigcirc

O

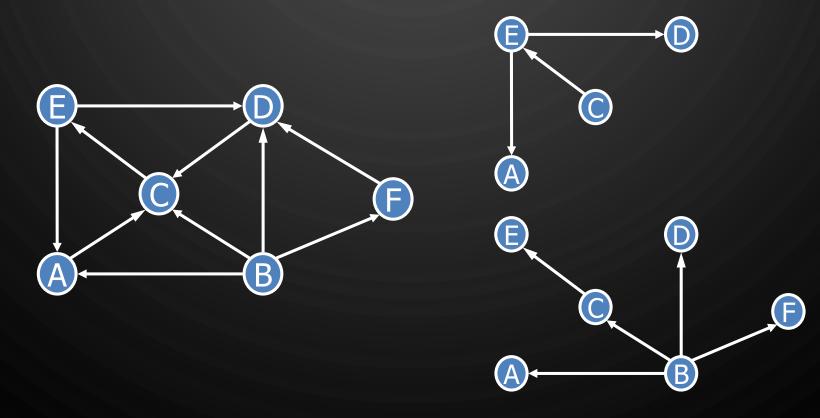
9

 \bigcirc

()

REACHABILITY

• DFS tree rooted at v: vertices reachable from v via directed paths



STRONG CONNECTIVITY

Q

 \bigcirc

O

 \mathcal{O}

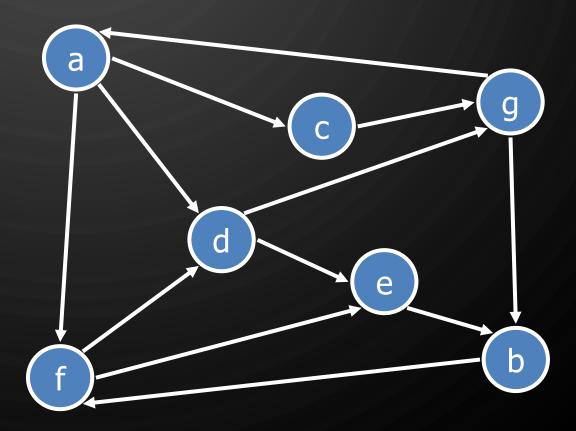
9

 \bigcirc

 \bigcirc

 \bigcirc

• Each vertex can reach all other vertices



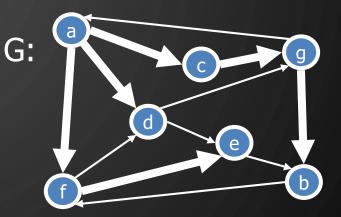
STRONG CONNECTIVITY ALGORITHM

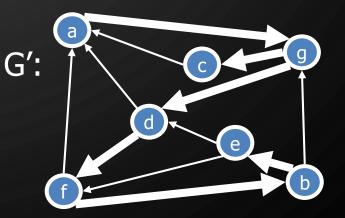
• Pick a vertex v in G

 \bigcirc

6

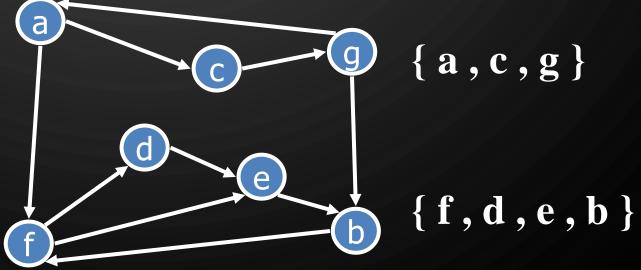
- Perform a DFS from v in G
 - If there's a *w* not visited, print "no"
- Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a *w* not visited, print "no"
 - Else, print "yes"
- Running time: O(n+m)





STRONGLY CONNECTED COMPONENTS

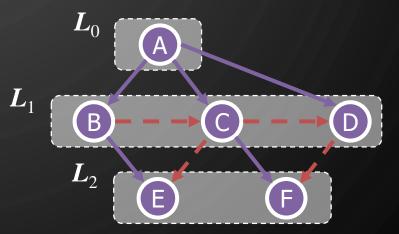
- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n + m) time using DFS, but is more complicated (similar to biconnectivity).



 \bigcirc

 \bigcirc

BREADTH-FIRST SEARCH



 \mathbf{O}

BREADTH-FIRST SEARCH

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G

- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G

- BFS on a graph with n vertices and m edges takes O(n + m) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS ALGORITHM

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G) Input: Graph G Output: Labeling of the edges and partition of the vertices of G 1. for each $v \in G$.vertices() do 2. setLabel(v, UNEXPLORED) 3. for each $e \in G$.edges() do 4. setLabel(e, UNEXPLORED) 5. for each $v \in G$.vertices() do 6. if getLabel(v) = UNEXPLORED then 7. BFS(G, v)

Algorithm BFS(G,s)**Input:** Graph G, a start vertex s1. List $L_0 \leftarrow \{s\}$ 2. setLabel(s, VISITED) $3. i \leftarrow 0$ **4.** while $\neg L_i$.isEmpty() do 5. List $L_{i+1} \leftarrow \emptyset$ 6. for each $v \in L_i$ do 7. for each $e \in G$.outgoingEdges(v) do 8. if getLabel(e) = UNEXPLORED then 9. $w \leftarrow G.$ opposite(v, e)10. if getLabel(w) = UNEXPLORED then 11. setLabel(e, DISCOVERY) 12. setLabel(w,VISITED) 13. $L_{i+1} \leftarrow L_{i+1} \cup \{w\}$ 14. else 15. setLabel(e, CROSS) 16. $i \leftarrow i + 1$

Q EXAMPLE L_0 (A unexplored vertex A L_1 A visited vertex C B unexplored edge discovery edge Ε F cross edge L_0 L_0 A (A) \boldsymbol{L}_1 L_1 B C B D Έ F Е F

(D)

D

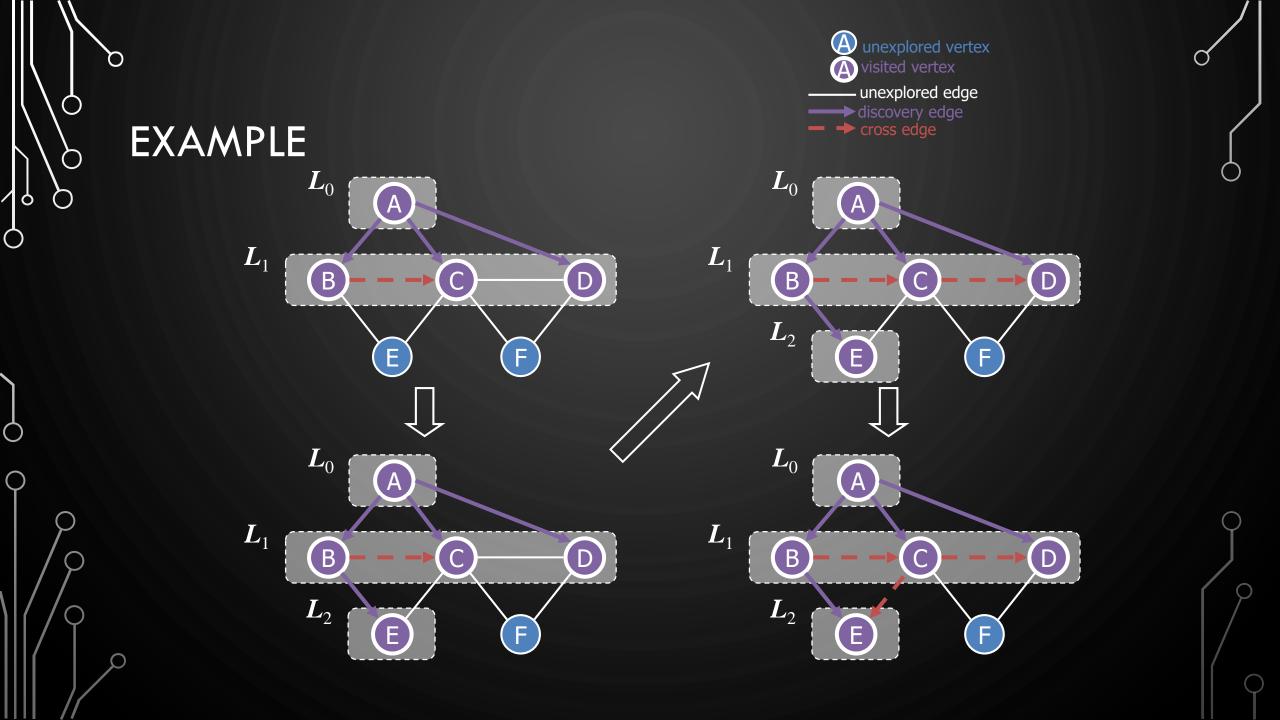
 \bigcirc

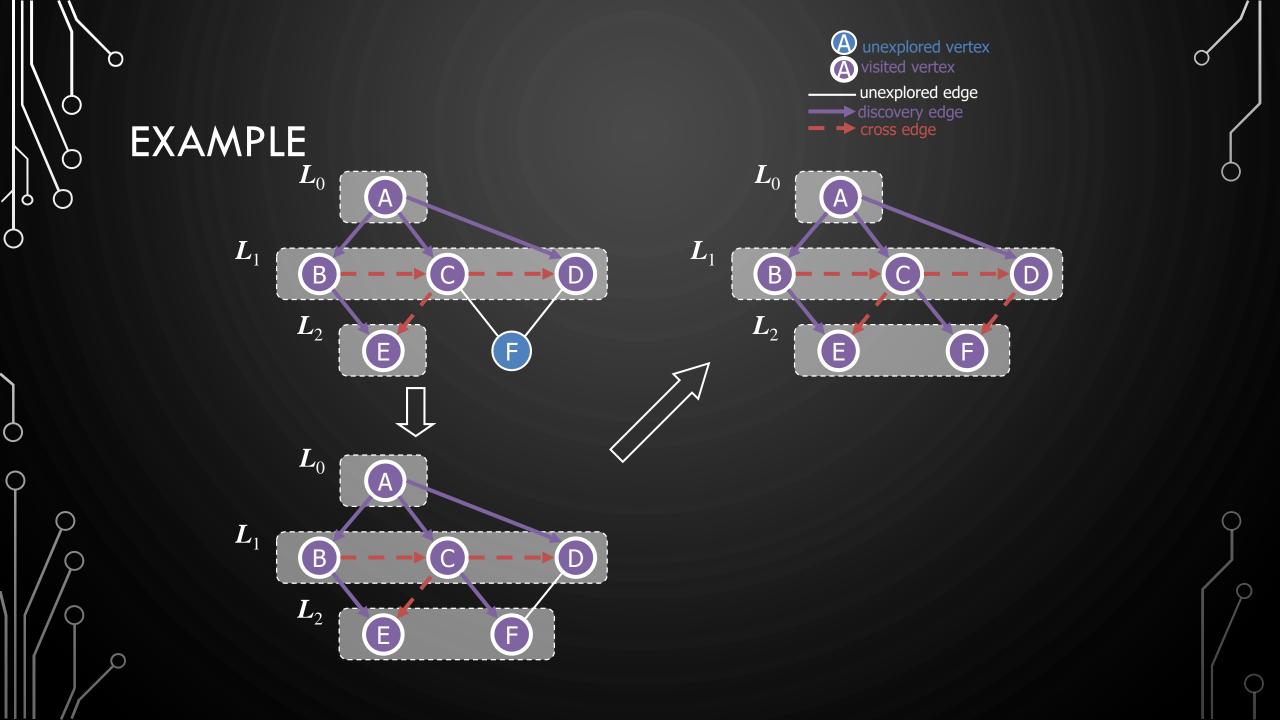
 \bigcirc

 \mathcal{O}

6

 \bigcirc

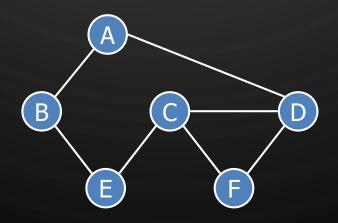




EXERCISE BFS ALGORITHM

• Perform BFS of the following graph, start from vertex F

- Assume adjacent edges are processed in alphabetical order
- Number vertices in the order they are visited and note the level they are in
- Label edges as discovery or cross edges



Q

PROPERTIES

Notation

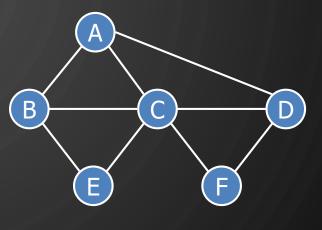
O

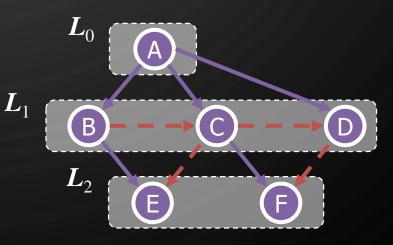
 \bigcirc

 \mathcal{O}

6

- G_s : connected component of s
- Property 1
 - BFS(G, s) visits all the vertices and edges of G_s
- Property 2
 - The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s
- Property 3
 - For each vertex $v \in L_i$
 - The path of T_s from s to v has i edges
 - Every path from s to v in G_s has at least i edges





ANALYSIS

Q

- Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method outgoingEdges() is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$

APPLICATIONS

Q

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS VS. BFS

6

 \bigcirc

O

0

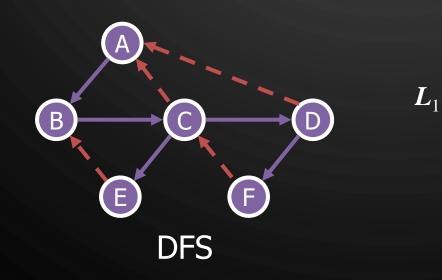
6

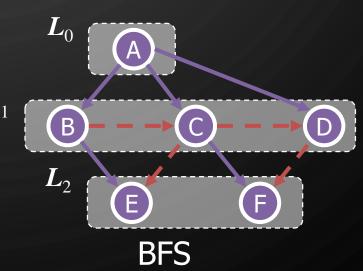
 \circ

 \bigcirc

 \bigcirc

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	\checkmark	\checkmark
Shortest paths		\checkmark
Biconnected components	\checkmark	





 \circ

DFS VS. BFS

D

 \bigcirc

O

9

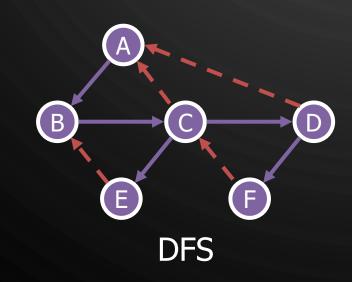
 \bigcirc

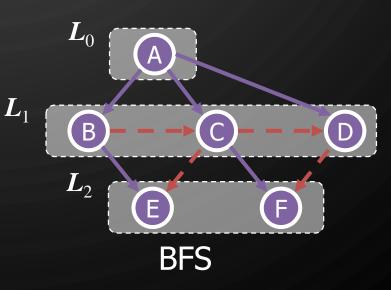
Back edge (v, w)

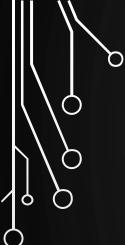
• w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

• *w* is in the same level as *v* or in the next level in the tree of discovery edges







 \bigcirc

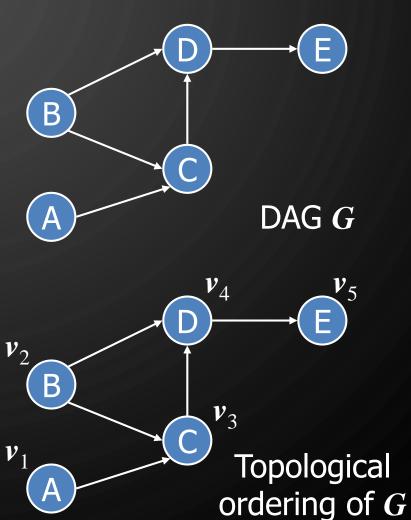
TOPOLOGICAL ORDERING



DAGS AND TOPOLOGICAL ORDERING

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering
 - $v_1, ..., v_n$

- Of the vertices such that for every edge (v_i, v_j) , we have i < j
- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
- Theorem A digraph admits a topological ordering if and only if it is a DAG



APPLICATION

 \mathcal{O}

 \bigcirc

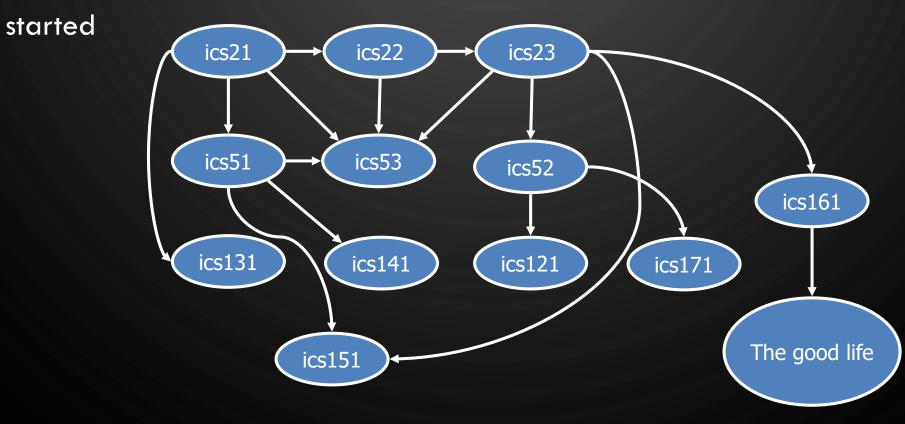
O

6

6

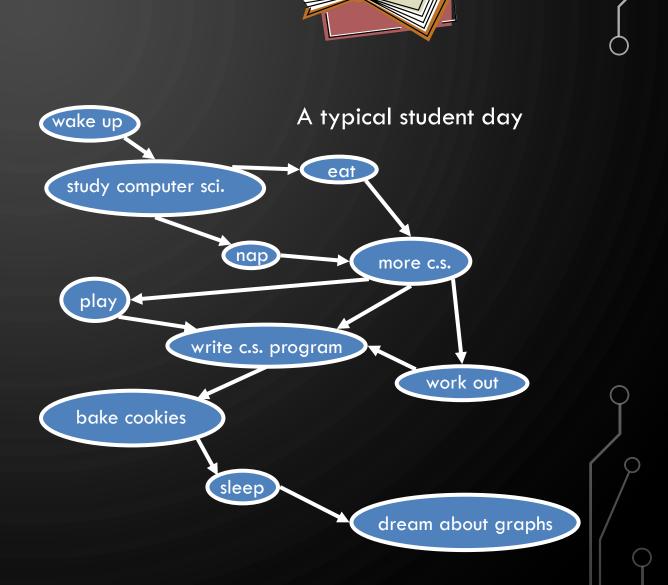
 \bigcirc

• Scheduling: edge (a, b) means task a must be completed before b can be



EXERCISE TOPOLOGICAL SORTING

• Number vertices, so that (u, v)in E implies u < v



 \mathcal{O}

 \bigcirc

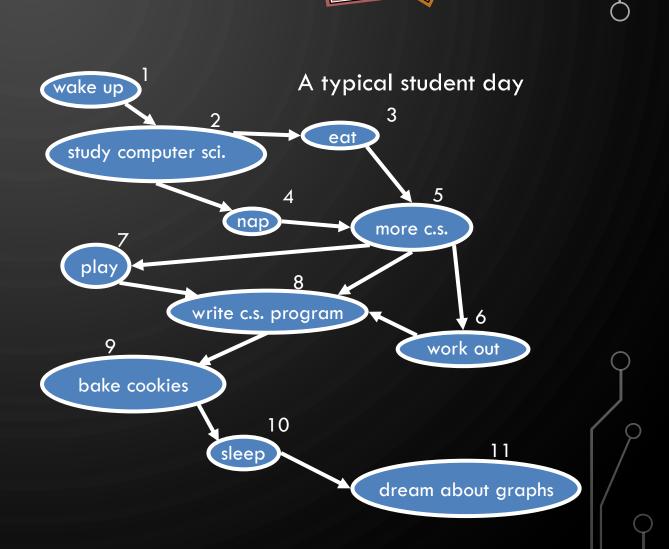
 \bigcirc

 \mathcal{O}

6

EXERCISE TOPOLOGICAL SORTING

• Number vertices, so that (u, v)in E implies u < v



 \mathcal{O}

 \bigcirc

 \bigcirc

 \mathcal{O}

6

ALGORITHM FOR TOPOLOGICAL SORTING

Algorithm TopologicalSort(G) Input: Directed Acyclic Graph (DAG) G Output: Topological ordering of G 1. $H \leftarrow G$ 2. $n \leftarrow G$.numVertices() 3. while $\neg H$.isEmpty() do 4. Let v be a vertex with no outgoing edges 5. Label $v \leftarrow n$ 6. $n \leftarrow n-1$ 7. H.removeVertex(v)

Q

IMPLEMENTATION WITH DFS

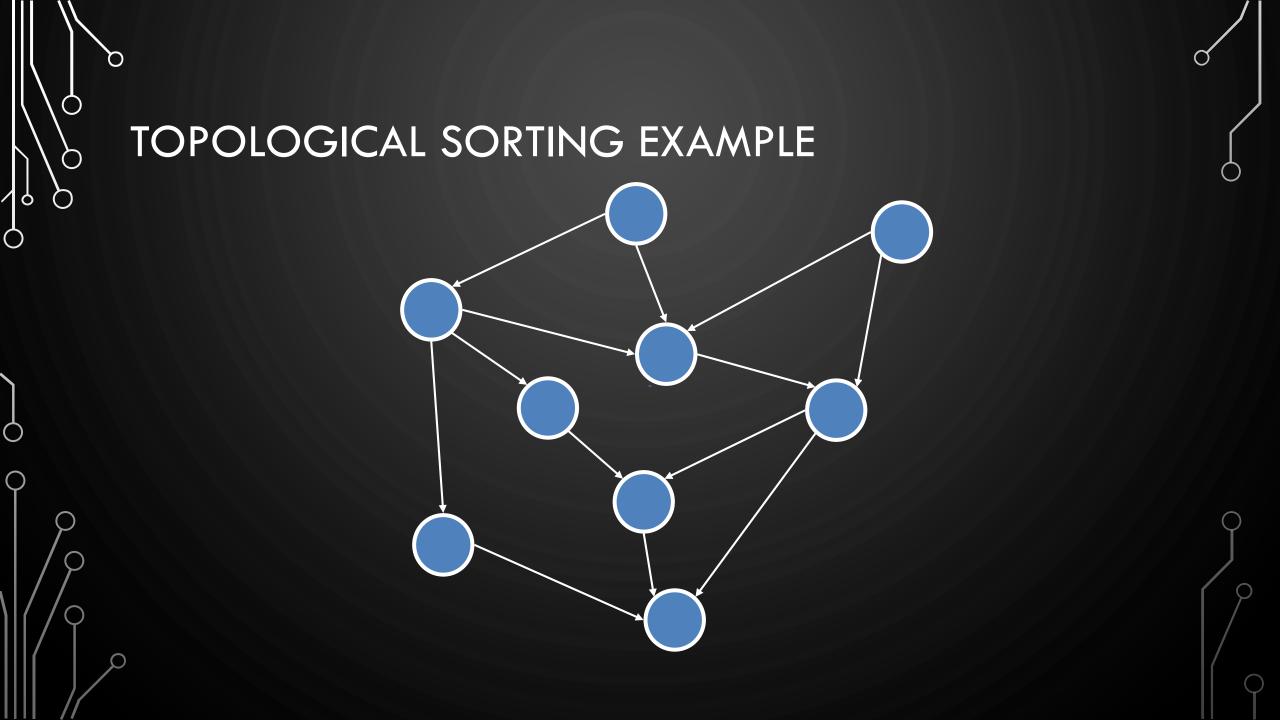
- Simulate the algorithm by using depth-first search
- 0(n+m) time.

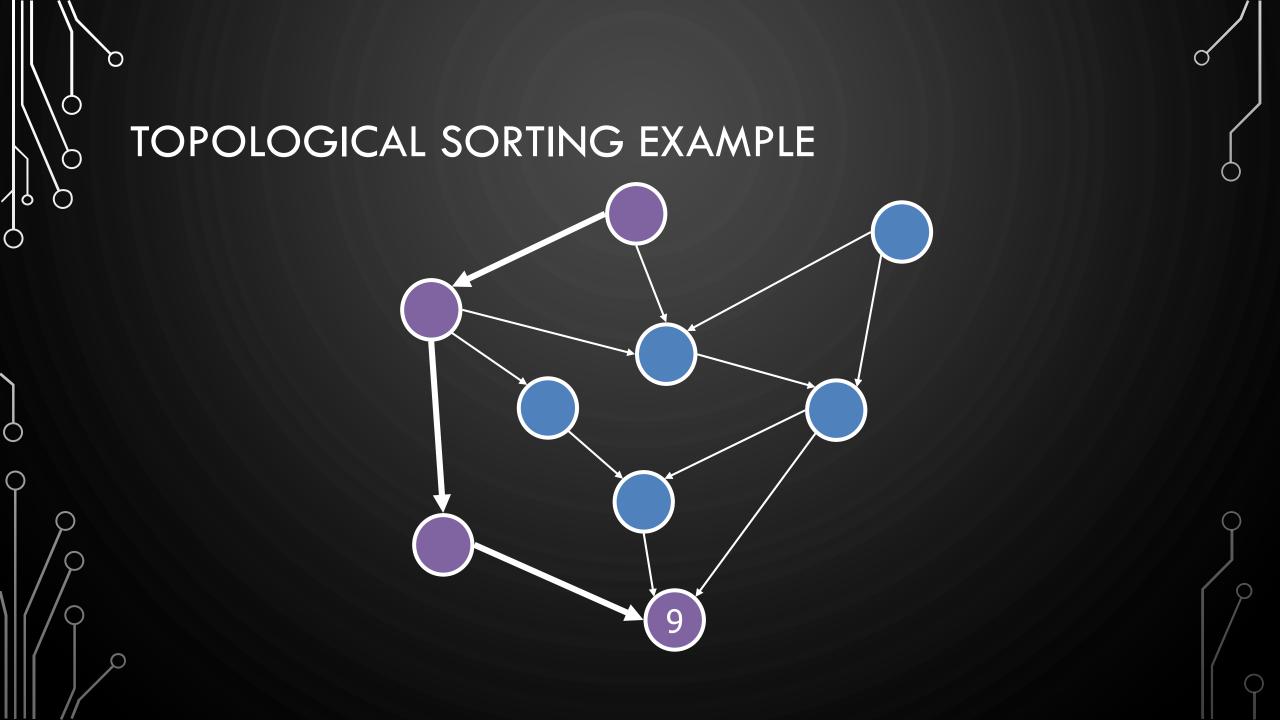
Algorithm topologicalDFS(G) Input: DAG G Output: Topological ordering of G

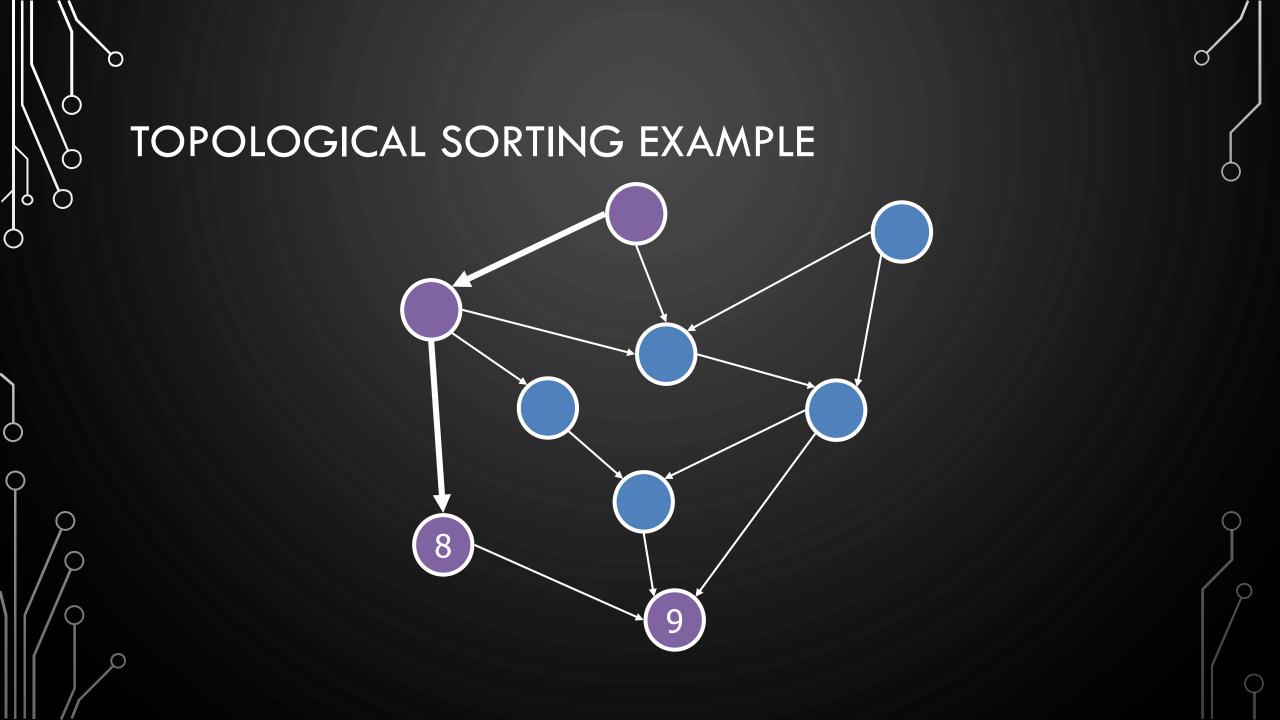
- 1. $n \leftarrow G.$ numVertices()
- 2. Initialize all vertices as UNEXPLORED
- **3.** for each vertex $v \in G$.vertices() do
- 4. if getLabel(v) = UNEXPLORED then
- 5. topologicalDFS(G, v)

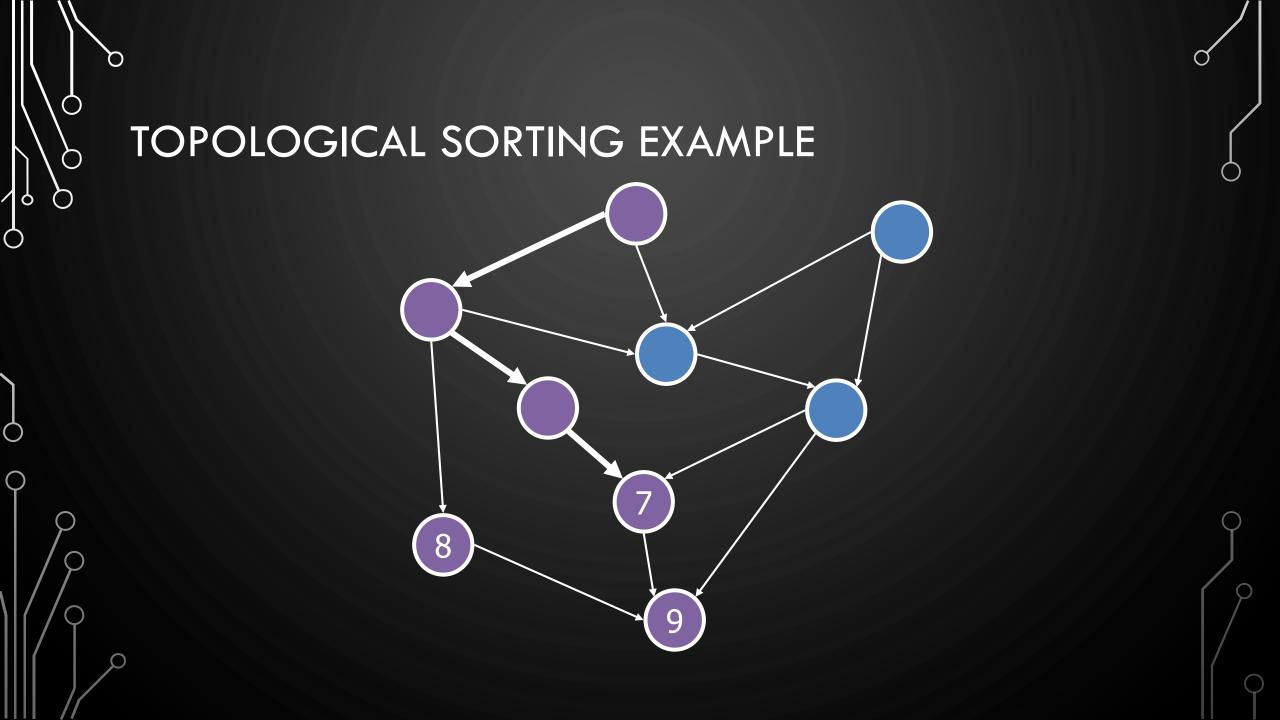
Algorithm topologicalDFS(G, v) **Input:** DAG G, start vertex v**Output:** Labeling of the vertices of Gin the connected component of v1. setLabel(v, VISITED) **2.** for each $e \in G$.outgoingEdges(v) do 3. $w \leftarrow G.opposite(v, e)$ 4. if getLabel(w) = UNEXPLORED then 5. //e is a discovery edge 6. topologicalDFS(G, w)7. else 8. //e is a forward, cross, or back edge 9. Label v with topological number n*10.* $n \leftarrow n - 1$

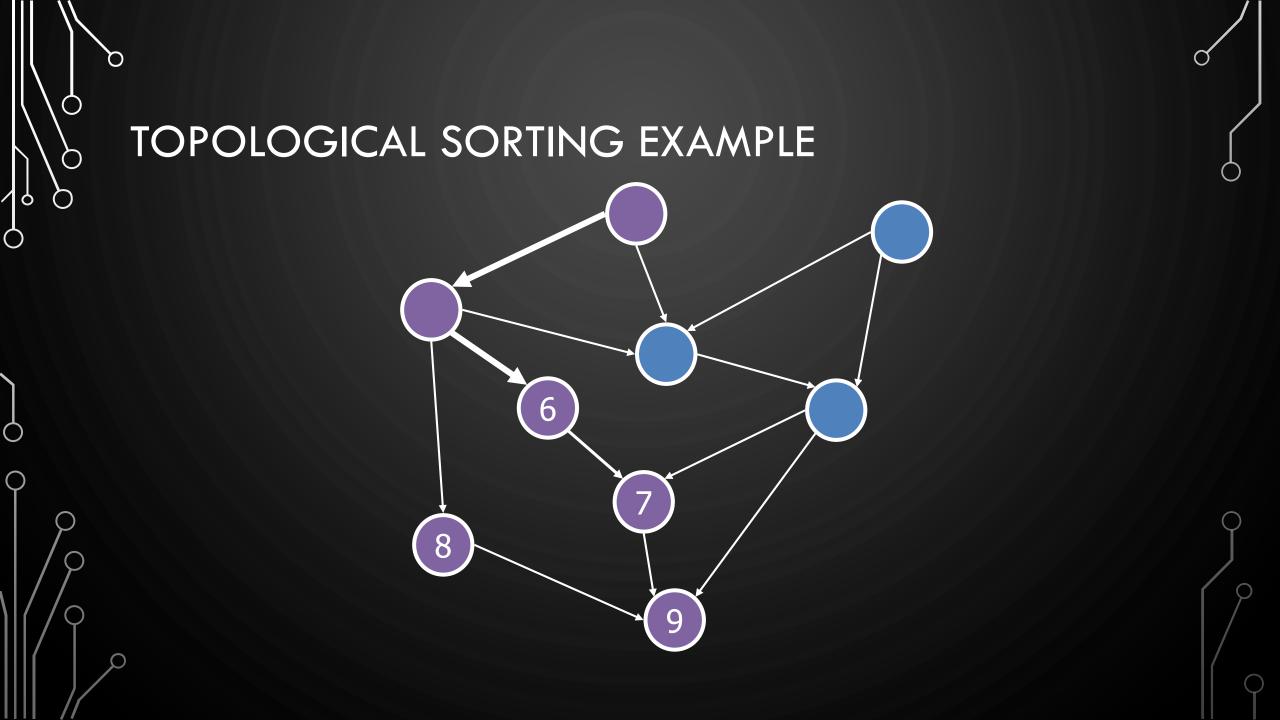
Q

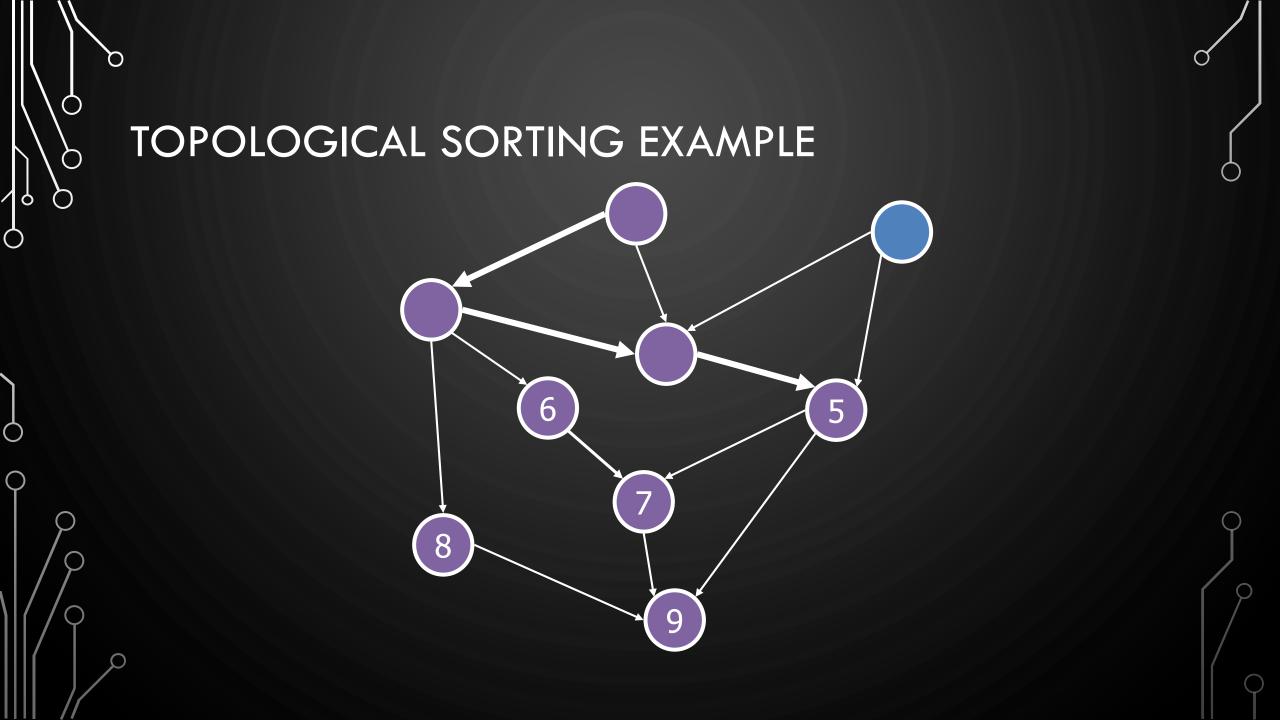


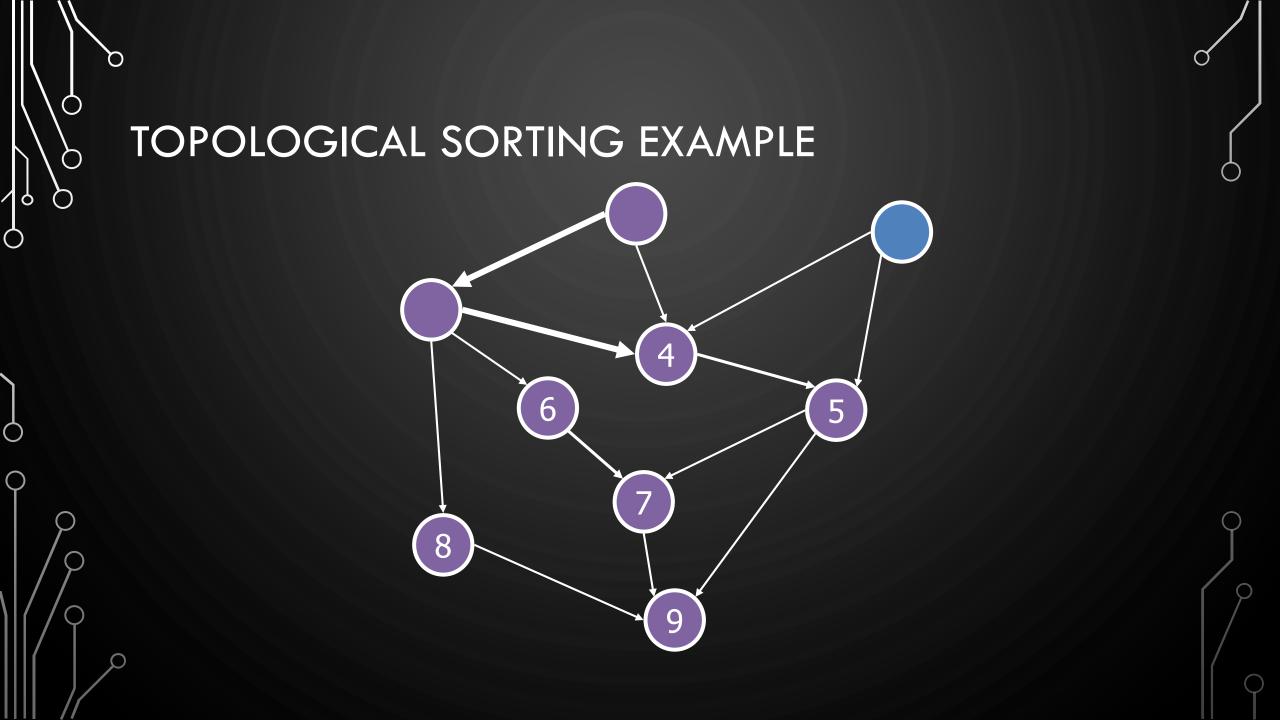


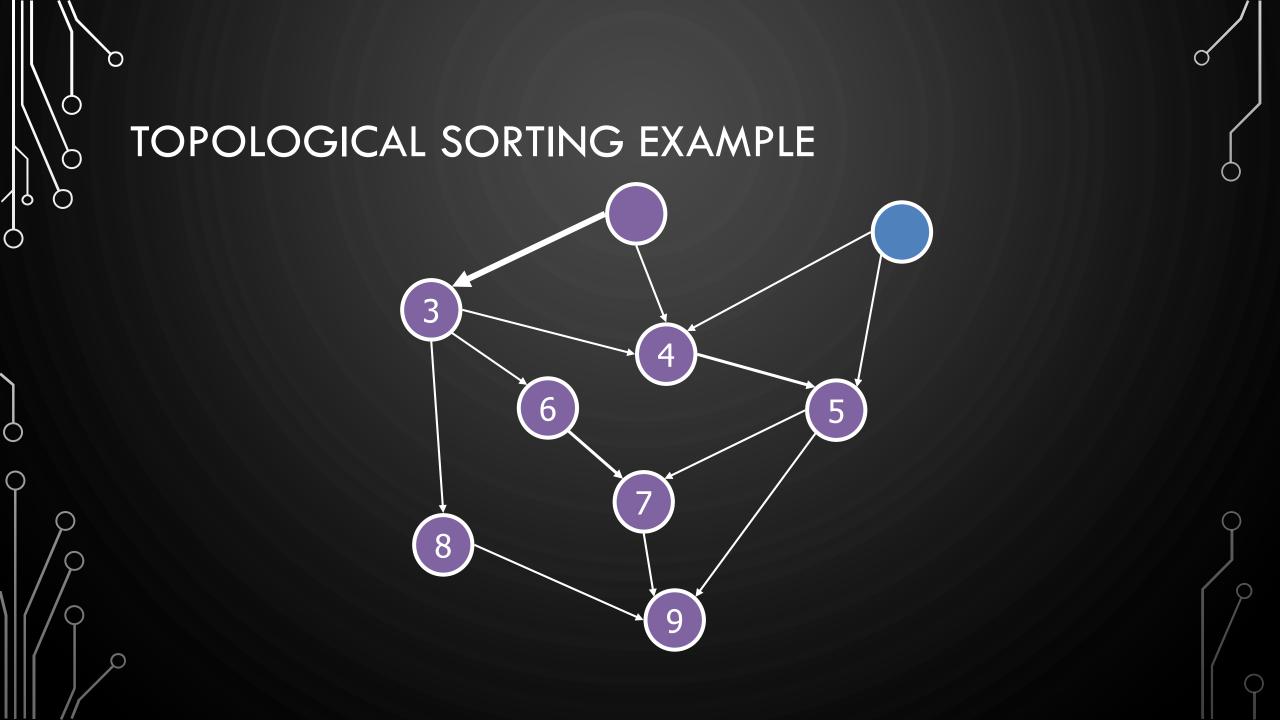


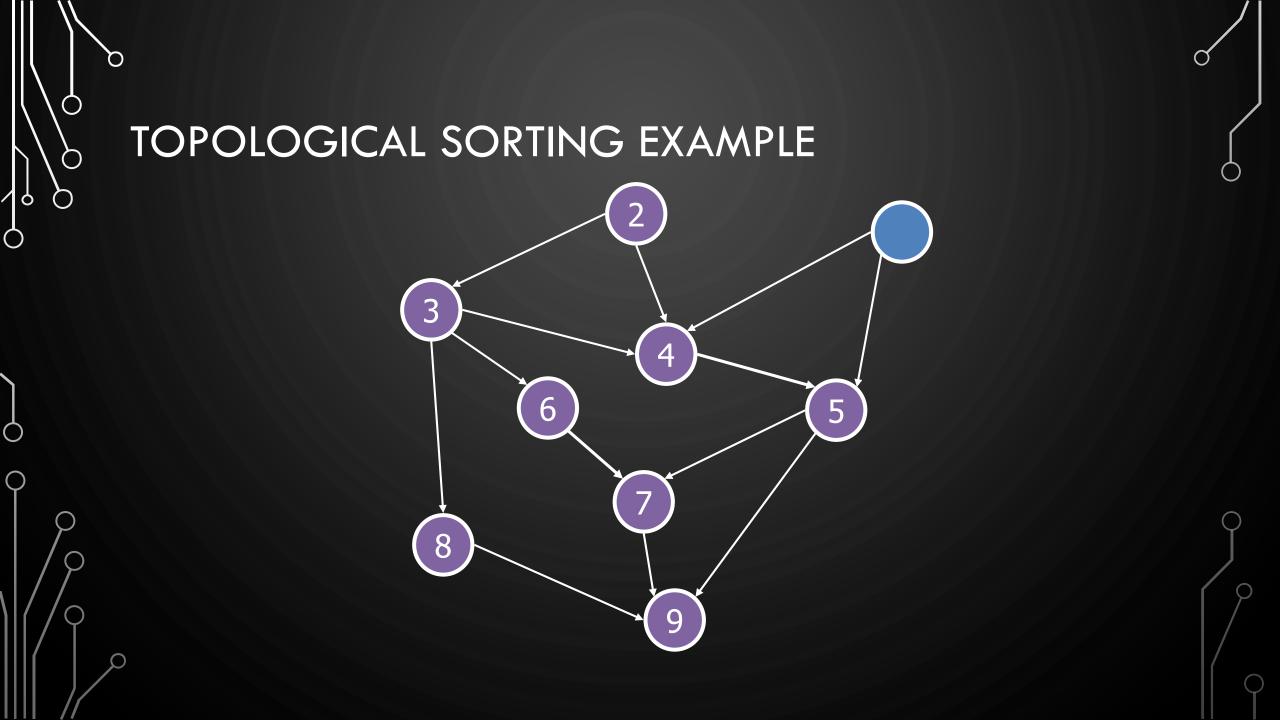


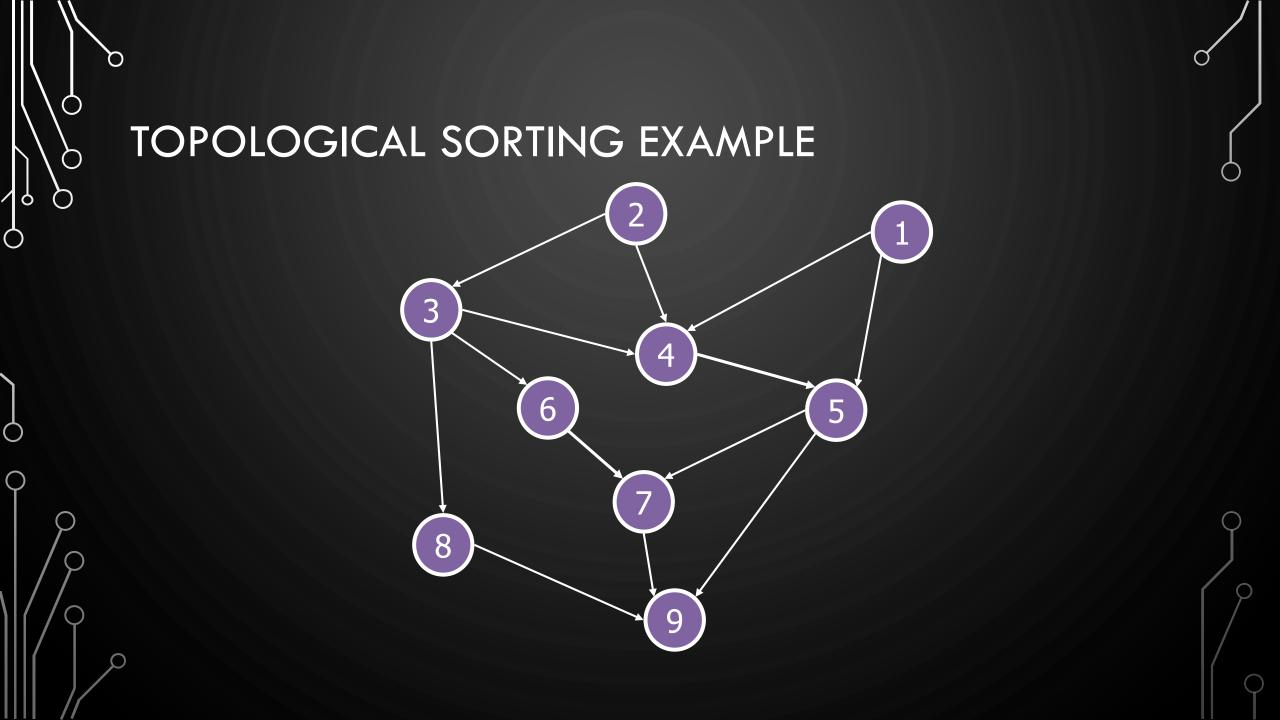








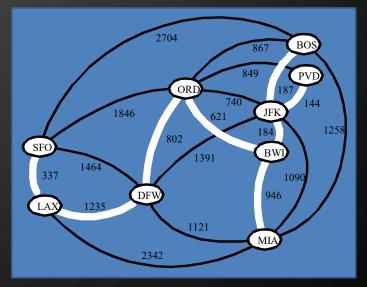




 \bigcirc

 \bigcirc

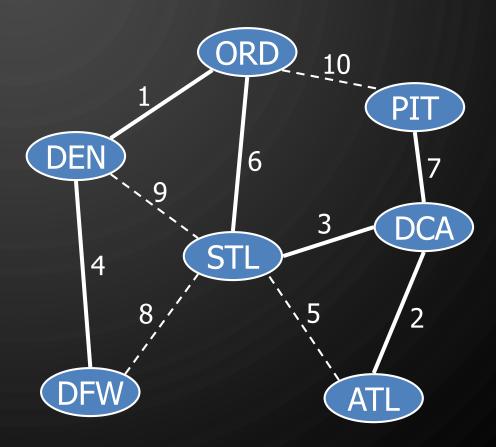
MINIMUM SPANNING TREES



MINIMUM SPANNING TREE

Minimum spanning tree (MST)

- Spanning tree of a weighted graph with minimum total edge weight
- Applications
 - Communications networks
 - Transportation networks



O

 \bigcirc

 \bigcirc

 \mathcal{O}

6

 \bigcirc

EXERCISE MST

0

 \bigcirc

O

 \mathcal{O}

6

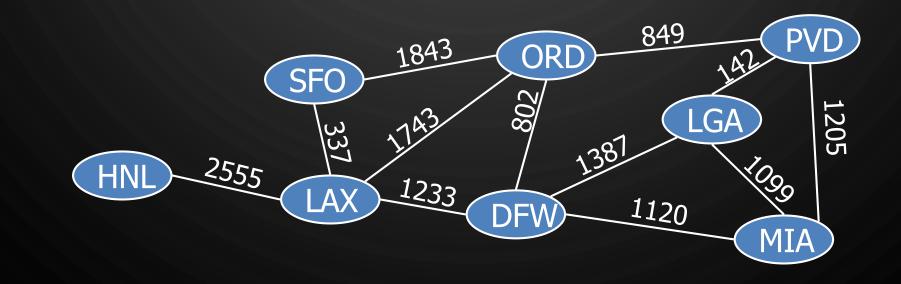
 \bigcirc

 \bigcirc

 \bigcirc

O

• Show an MST of the following graph.

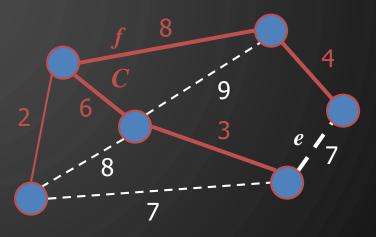


CYCLE PROPERTY

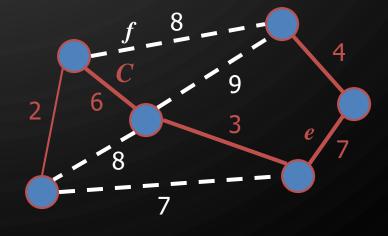
• Cycle Property:

Q

- Let T be a minimum spanning tree of a weighted graph G
- Let e be an edge of G that is not in T and C let be the cycle formed by e with T
- For every edge f of C, weight $(f) \le weight(e)$
- Proof by contradiction:
 - If weight(f) > weight(e) we can get
 a spanning tree of smaller weight by
 replacing e with f



Replacing *f* with *e* yields a better spanning tree



PARTITION PROPERTY

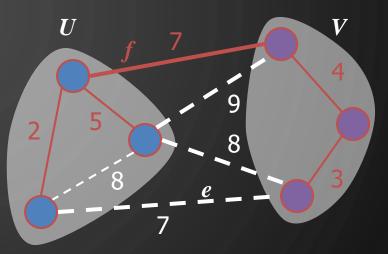
• Partition Property:

Q

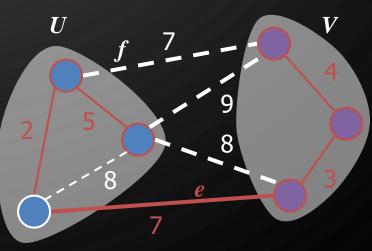
- Consider a partition of the vertices of G into subsets U and V
- Let *e* be an edge of minimum weight across the partition
- There is a minimum spanning tree of G containing edge e

• Proof by contradition:

- Let T be an MST of G
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
- By the cycle property, $weight(f) \le weight(e)$
- Thus, weight(f) = weight(e)
- We obtain another MST by replacing f with e



Replacing f with e yields another MST

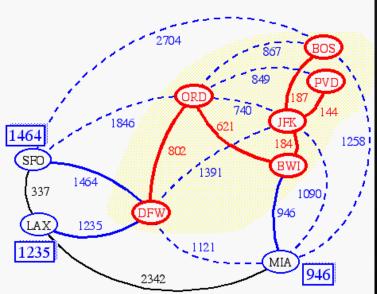


PRIM-JARNIK'S ALGORITHM

- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v a label d(v) representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:

Q

- We add to the cloud the vertex *u* outside the cloud with the smallest distance label
- We update the labels of the vertices adjacent to u



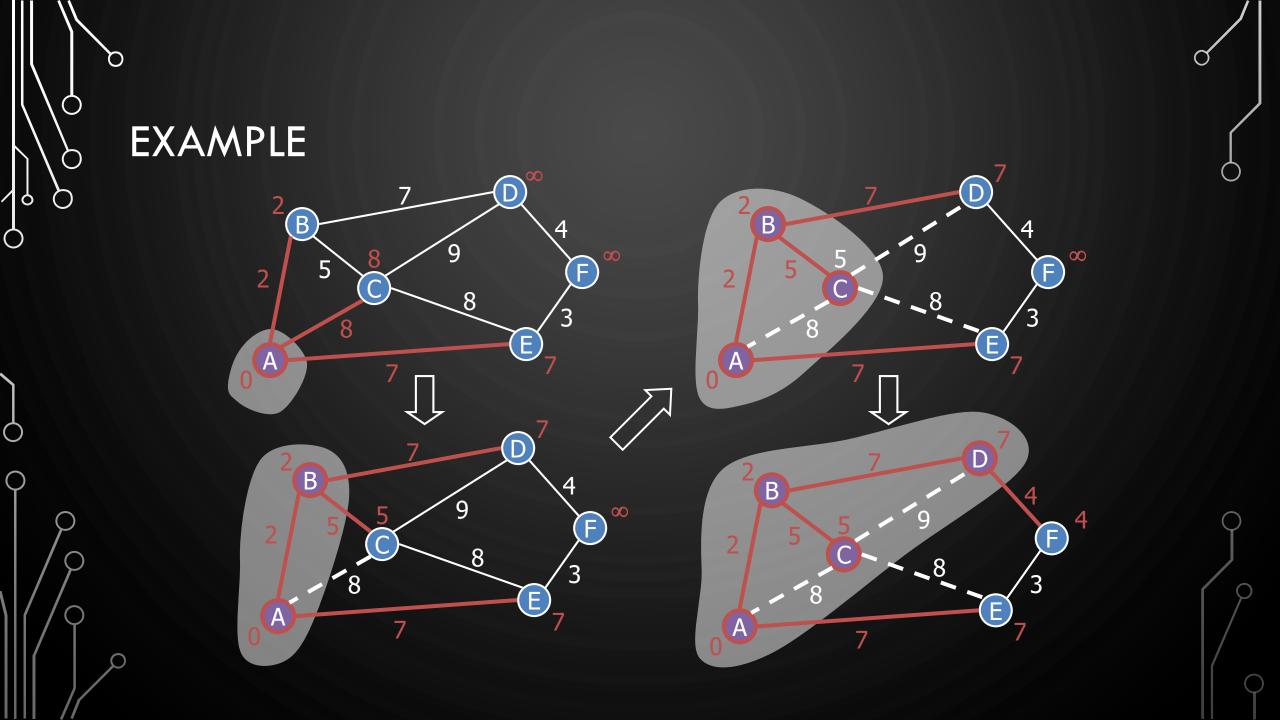
PRIM-JARNIK'S ALGORITHM

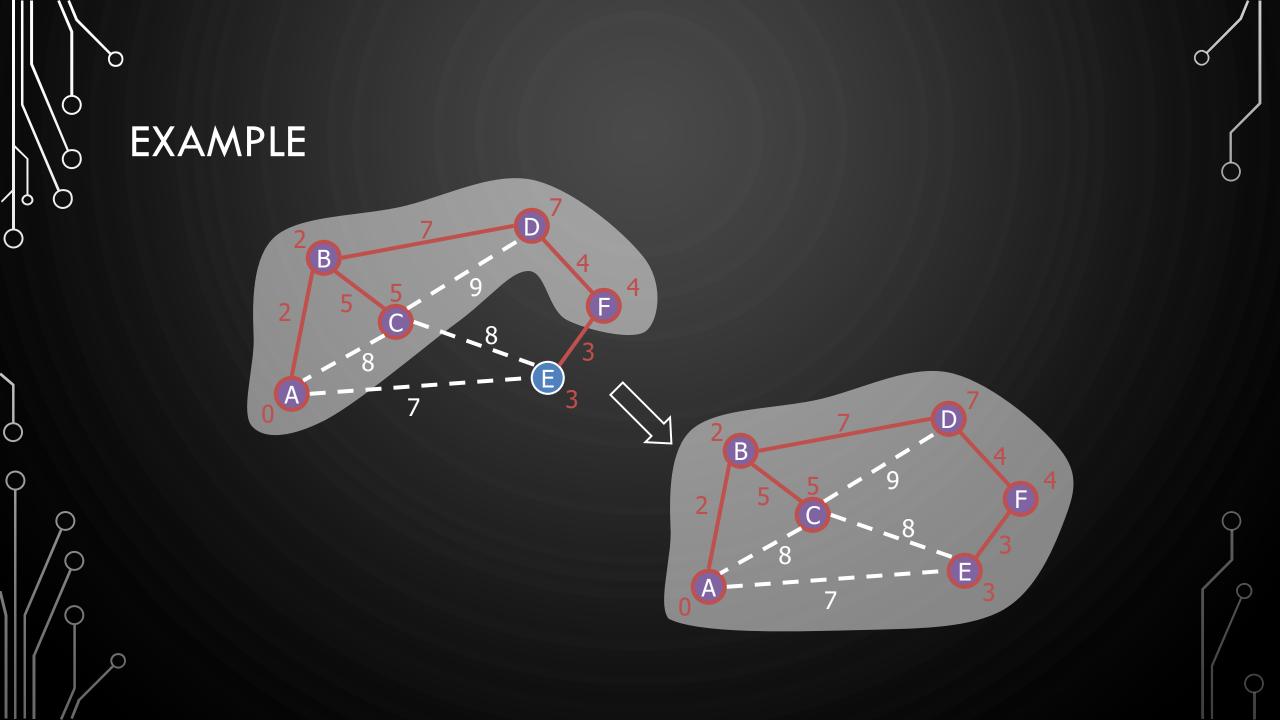
- An adaptable priority queue stores the vertices outside the cloud
 - Key: distance, D[v]

Q

- Element: vertex v
- Q.replace(i,k) changes the key of an item
- We store three labels with each vertex v:
 - Distance D[v]
 - Parent edge in MST P[v]
 - Locator in priority queue

Algorithm PrimJarnikMST(G) **Input:** A weighted connected graph *G* **Output:** A minimum spanning tree T of G1. Pick any vertex s of G2. $D[s] \leftarrow 0; P[s] \leftarrow \emptyset$ **3.** for each vertex $v \neq s$ do 4. $D[v] \leftarrow \infty; P[v] \leftarrow \emptyset$ 5. $T \leftarrow \emptyset$ 6. Priority queue Q of vertices with D[v] as the key 7. while $\neg Q$.isEmpty() do 8. $u \leftarrow Q$.removeMin() Add vertex u and edge P[u] to T9. **10.** for each $e \in u$.outgoingEdges() do 11. $v \leftarrow G.opposite(u, e)$ 12. if e.weight() < D[v] then 13. $D[v] \leftarrow e.weight(); P[v] \leftarrow e$ 14. Q.replace(v, D[v])15. return T





EXERCISE PRIM'S MST ALGORITHM

D

 \bigcirc

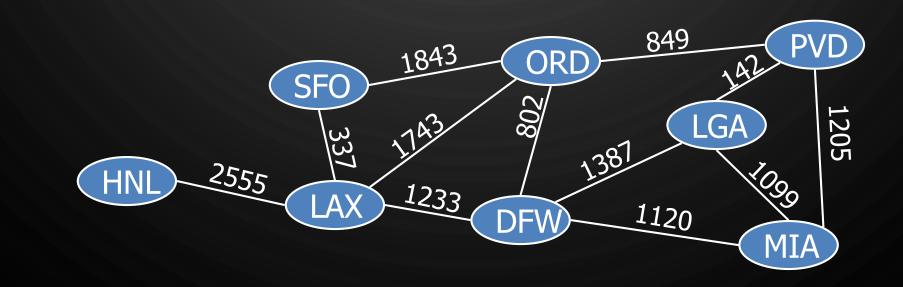
 \bigcirc

 \mathcal{O}

6

 \bigcirc

- Show how Prim's MST algorithm works on the following graph, assuming you start with SFO
 - Show how the MST evolves in each iteration.



ANALYSIS

- Graph operations
 - Method incidentEdges is called once for each vertex
- Label operations
 - We set/get the distance, parent and locator labels of vertex z O(deg(z)) times
 - Setting/getting a label takes O(1) time
- Priority queue operations
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time
 - The key of a vertex w in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time
- Prim-Jarnik's algorithm runs in $O((n+m)\log n)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\Sigma_v \deg(v) = 2m$
- If the graph is connected the running time is $O(m \log n)$