
CHAPTER 14
GRAPH ALGORITHMS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

ORD

DFW

SFO

LAX

GRAPH

• A graph is a pair 𝐺 = (𝑉, 𝐸), where

• 𝑉 is a set of nodes, called vertices

• 𝐸 is a collection of pairs of vertices, called edges

• Vertices and edges can store arbitrary elements

• Example:

• A vertex represents an airport and stores the three-letter airport code

• An edge represents a flight route between two airports and stores the mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

APPLICATIONS

• Electronic circuits

• Printed circuit board

• Integrated circuit

• Transportation networks

• Highway network

• Flight network

• Computer networks

• Local area network

• Internet

• Web

• Databases

• Entity-relationship diagram

TERMINOLOGY
EDGE AND GRAPH TYPES

• Edge Types

• Directed edge

• ordered pair of vertices (𝑢, 𝑣)

• first vertex 𝑢 is the origin/source

• second vertex 𝑣 is the destination/target

• e.g., a flight

• Undirected edge

• unordered pair of vertices (𝑢, 𝑣)

• e.g., a flight route

• Weighted edge

• Numeric label associated with edge

• Graph Types

• Directed graph (Digraph)

• all the edges are directed

• e.g., route network

• Undirected graph

• all the edges are undirected

• e.g., flight network

• Weighted graph

• all the edges are weighted

ORD DFW
flight

AA 1206
𝑢 𝑣

(𝑢, 𝑣)

802 miles

ORD DFW
flight
route

802 miles𝑢 𝑣

TERMINOLOGY
VERTICES AND EDGES

• End points (or end vertices) of an edge

• 𝑈 and 𝑉 are the endpoints of 𝑎

• Edges incident on a vertex

• 𝑎, 𝑑, and 𝑏 are incident on 𝑉

• Adjacent vertices

• 𝑈 and 𝑉 are adjacent

• Degree of a vertex

• 𝑋 has degree 5

• Parallel (multiple) edges

• ℎ and 𝑖 are parallel edges

• Self-loop

• 𝑗 is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Note: A graph with no parallel edges or self loops are

said to be simple. Unless otherwise stated, you should

assume all graphs discussed are simple

TERMINOLOGY
VERTICES AND EDGES

• Outgoing edges of a vertex

• ℎ and 𝑏 are the outgoing edges of 𝑋

• Incoming edges of a vertex

• e, g, and 𝑖 are incoming edges of 𝑋

• In-degree of a vertex

• 𝑋 has in-degree 3

• Out-degree of a vertex

• 𝑋 has out-degree 2

X

V

W

Z

Y

b

e

d

f

g

h

i

j

TERMINOLOGY
PATHS

• Path

• Sequence of alternating vertices and edges

• Begins with a vertex

• Ends with a vertex

• Each edge is preceded and followed by its endpoints

• Simple path

• Path such that all its vertices and edges are distinct

• Examples

• 𝑃1 = 𝑉, 𝑏, 𝑋, ℎ, 𝑍 is a simple path

• 𝑃2 = 𝑈, 𝑐,𝑊, 𝑒, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑑, 𝑉 is a path that is not simple

P1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

TERMINOLOGY
CYCLES

• Cycle

• Circular sequence of alternating vertices and edges

• Each edge is preceded and followed by its endpoints

• Simple cycle

• Cycle such that all its vertices and edges are distinct except for

the beginning and ending vertex

• Examples

• 𝐶1 = 𝑉, 𝑏, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑐, 𝑈, 𝑎, 𝑉 is a simple cycle

• 𝐶2 = 𝑈, 𝑐,𝑊, 𝑒, 𝑋, 𝑔, 𝑌, 𝑓,𝑊, 𝑑, 𝑉, 𝑎, 𝑈 is a cycle that is not simple

• A digraph is called acyclic if it does not contain any cycles

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

EXERCISE ON TERMINOLOGY
1. Number of vertices?

2. Number of edges?

3. What type of the graph is it?

4. Show the end vertices of the edge with largest weight

5. Show the vertices of smallest degree and largest degree

6. Show the edges incident to the vertices in the above question

7. Identify the shortest simple path from HNL to PVD

8. Identify the simple cycle with the most edges

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS

• Property 1 – Total degree

Σ𝑣𝑑𝑒𝑔 𝑣 =?

• Property 2 – Total number of edges

• In an undirected graph with no self-

loops and no multiple edges

𝑚 ≤ 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑?

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑?≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

A graph with given number of
vertices (4) and maximum
number of edges

Example

 𝑛 =?

 𝑚 =?

 deg 𝑣 =?

EXERCISE
PROPERTIES OF UNDIRECTED GRAPHS

• Property 1 – Total degree

Σ𝑣𝑑𝑒𝑔 𝑣 = 2𝑚

• Property 2 – Total number of edges

• In an undirected graph with no self-loops and

no multiple edges

𝑚 ≤
𝑛(𝑛 − 1)

2
0 ≤ 𝑚

Proof: Each vertex can have degree at most

𝑛 − 1

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 = 4

 𝑚 = 6

 deg 𝑣 = 3

A graph with given number of
vertices (4) and maximum
number of edges

EXERCISE
PROPERTIES OF DIRECTED GRAPHS

• Property 1 – Total in-degree and out-

degree

Σ𝑣𝑖𝑛 − deg(𝑣) =?

Σ𝑣𝑜𝑢𝑡 − deg 𝑣 =?

• Property 2 – Total number of edges

• In an directed graph with no self-loops

and no multiple edges

𝑚 ≤ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑?

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑?≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 =?

 𝑚 =?

 deg 𝑣 =?

A graph with given number of
vertices (4) and maximum
number of edges

EXERCISE
PROPERTIES OF DIRECTED GRAPHS

• Property 1 – Total in-degree and out-

degree

Σ𝑣𝑖𝑛 − deg(𝑣) = 𝑚

Σ𝑣𝑜𝑢𝑡 − deg 𝑣 = 𝑚

• Property 2 – Total number of edges

• In an directed graph with no self-loops

and no multiple edges

𝑚 ≤ 𝑛 𝑛 − 1

0 ≤ 𝑚

• Notation

• 𝑛 number of vertices

• 𝑚 number of edges

• deg(𝑣) degree of vertex v

Example

 𝑛 = 4

 𝑚 = 12

 deg 𝑣 = 6

A graph with given number of
vertices (4) and maximum
number of edges

TERMINOLOGY
CONNECTIVITY

• Given two vertices 𝑢 and 𝑣, we say 𝑢

reaches 𝑣, and that 𝑣 is reachable from

𝑢, if there exists a path from 𝑢 to 𝑣. In

an undirected graph reachability is

symmetric

• A graph is connected if there is a path

between every pair of vertices

• A digraph is strongly connected if there

every pair of vertices is reachable

𝑢 𝑣

Connected graph
𝑢 and 𝑣 are reachable

𝑢 𝑣

Connected digraph
𝑢 and 𝑣 are not mutually reachable

TERMINOLOGY
SUBGRAPHS

• A subgraph 𝐻 of a graph 𝐺 is a graph

whose vertices and edges are subsets of 𝐺 ,

respectively

• A spanning subgraph of 𝐺 is a subgraph

that contains all the vertices of 𝐺

• A connected component of a graph 𝐺 is

a maximal connected subgraph of 𝐺

Subgraph

Spanning subgraph

Non connected graph with two
connected components

TERMINOLOGY
TREES AND FORESTS

• A forest is a graph without cycles

• A (free) tree is connected forest

• This definition of tree is different from

the one of a rooted tree

• The connected components of a

forest are trees

Tree

Forest

SPANNING TREES AND FORESTS

• A spanning tree of a connected graph

is a spanning subgraph that is a tree

• A spanning tree is not unique unless the

graph is a tree

• Spanning trees have applications to the

design of communication networks

Graph

Spanning tree

GRAPH ADT

• Vertices and edges are

lightweight objects and

store elements

• Although the ADT is

specified from the graph

object, we often have

similar functions in the

Vertex and Edge objects

EXERCISE ON ADT

1.outgoingEdges(𝑜𝑟𝑑)

2.incomingEdges(𝑜𝑟𝑑)

3.outDegree(𝑜𝑟𝑑)

4.endVertices(𝑙𝑔𝑎,𝑚𝑖𝑎)

5.opposite(𝑑𝑓𝑤, 𝑑𝑓𝑤, 𝑙𝑔𝑎)

6.insertVertex(𝑖𝑎ℎ)

7.insertEdge(𝑚𝑖𝑎, 𝑝𝑣𝑑, 1200)

8.removeVertex(𝑜𝑟𝑑)

9.removeEdge(𝑑𝑓𝑤, 𝑜𝑟𝑑)

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

EDGE LIST STRUCTURE

• An edge list can be stored in a list or a

map/dictionary (e.g. hash table)

• Vertex object

• element

• reference to position in vertex sequence

• Edge object

• element

• origin vertex object

• destination vertex object

• reference to position in edge sequence

ORD
PVD

MIA
DFW

LGA

{ORD, PVD, 849}

{ORD, DFW, 802}

{LGA, PVD, 142}

{LGA, MIA, 1099}

{DFW, LGA, 1387}

{DFW, MIA, 1120}

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex List

EXERCISE
EDGE LIST STRUCTURE

• Construct the edge list for the following graph

u
x

y

v

z

w

ASYMPTOTIC PERFORMANCE
EDGE LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge List

Space ?

getEdge 𝑢, 𝑣 ,
outDegree 𝑣 ,

outgoingEdges 𝑣 ,

insertEdge(𝑢, 𝑣, 𝑤),

removeVertex(𝑣)

?

insertVertex(𝑥),

removeEdge(𝑒)
?

{ORD, PVD, 849}

{ORD, DFW, 802}

{LGA, PVD, 142}

{LGA, MIA, 1099}

{DFW, LGA, 1387}

{DFW, MIA, 1120}

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex List

ASYMPTOTIC PERFORMANCE
EDGE LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge List

Space 𝑂(𝑛 +𝑚)

getEdge 𝑢, 𝑣 ,
outDegree 𝑣 ,

outgoingEdges 𝑣 ,

insertEdge(𝑢, 𝑣, 𝑤),

removeVertex(𝑣)

𝑂(𝑚)

insertVertex(𝑥),

removeEdge(𝑒)
𝑂(1)

{ORD, PVD, 849}

{ORD, DFW, 802}

{LGA, PVD, 142}

{LGA, MIA, 1099}

{DFW, LGA, 1387}

{DFW, MIA, 1120}

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex List

ADJACENCY LIST STRUCTURE

• Adjacency Lists associate

vertices with their edges

(in addition to edge list!)

• Each vertex stores a list of

incident edges

• List of references to incident

edge objects

• Augmented edge object

• Stores references to associated

positions in incident adjacency

lists

ORD PVD

MIA
DFW

LGA

ORD

LGA

PVD

DFW

MIA

{ORD, PVD}

Adjacency List

{ORD, DFW}

{LGA, PVD} {LGA, MIA}

{PVD, ORD} {PVD, LGA}

{LGA, DFW}

{DFW, ORD} {DFW, LGA} {DFW, MIA}

{MIA, LGA} {MIA, DFW}

EXERCISE
ADJACENCY LIST STRUCTURE

• Construct the adjacency list for the following graph

u
x

y

v

z

a

ASYMPTOTIC PERFORMANCE
ADJACENCY LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency List

Space ?

getEdge 𝑢, 𝑣 ,

insertEdge(𝑢, 𝑣, 𝑤)
?

outDegree 𝑣 ,

insertVertex(𝑥),
removeEdge(𝑒)

?

outgoingEdges(𝑣),

removeVertex(𝑣)
?

ORD

LGA

PVD

DFW

MIA

{ORD, PVD}

Adjacency List

{ORD, DFW}

{LGA, PVD} {LGA, MIA}

{PVD, ORD} {PVD, LGA}

{LGA, DFW}

{DFW, ORD} {DFW, LGA} {DFW, MIA}

{MIA, LGA} {MIA, DFW}

ASYMPTOTIC PERFORMANCE
ADJACENCY LIST STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency List

Space 𝑂(𝑛 +𝑚)

getEdge 𝑢, 𝑣 ,

insertEdge(𝑢, 𝑣, 𝑤)
𝑂 min deg 𝑣 , deg 𝑢

outDegree 𝑣 ,

insertVertex(𝑥),
removeEdge(𝑒)

𝑂(1)

outgoingEdges(𝑣),

removeVertex(𝑣)
𝑂 deg 𝑣

ORD

LGA

PVD

DFW

MIA

{ORD, PVD}

Adjacency List

{ORD, DFW}

{LGA, PVD} {LGA, MIA}

{PVD, ORD} {PVD, LGA}

{LGA, DFW}

{DFW, ORD} {DFW, LGA} {DFW, MIA}

{MIA, LGA} {MIA, DFW}

ADJACENCY MAP STRUCTURE

• We can store augmenting incidence structures in maps, instead of lists. This is

called an adjacency map.

• In general an "adjacency list" means storing adjacency with vertices, so the terms are

interchangeable

• What would this do to the complexities?

• If it is implemented as a hash table?

• If it is implemented as a red-black tree?

ADJACENCY MATRIX STRUCTURE

0 1 2 3 4

0 ∅ ∅ {0, 2} {0, 3} ∅

1 ∅ ∅ {1, 2} {1, 3} {1, 4}

2 {0, 2} {1, 2} ∅ ∅ ∅

3 {0, 3} {1, 3} ∅ ∅ {3, 4}

4 ∅ {1, 4} ∅ {3, 4} ∅

• Adjacency matrices store references

to edges in a table

(in addition to the edge list)

• Augment vertices with integer keys

(often done in all graph

implementations!)

0:ORD 2:PVD

4:MIA
3:DFW

1:LGA

EXERCISE
ADJACENCY MATRIX STRUCTURE

• Construct the adjacency matrix for the following graph

u
x

y

v

z

a

ASYMPTOTIC PERFORMANCE
ADJACENCY MATRIX STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency Matrix

Space ?

outDegree 𝑣 ,

outgoingEdges 𝑣
?

getEdge(𝑢, 𝑣),

insertEdge(𝑢, 𝑣, 𝑤),

removeEdge(𝑒)

?

insertVertex(𝑥),

removeVertex(𝑣)
?

0 1 2 3 4

0 ∅ ∅ {0, 2} {0, 3} ∅

1 ∅ ∅ {1, 2} {1, 3} {1, 4}

2 {0, 2} {1, 2} ∅ ∅ ∅

3 {0, 3} {1, 3} ∅ ∅ {3, 4}

4 ∅ {1, 4} ∅ {3, 4} ∅

ASYMPTOTIC PERFORMANCE
ADJACENCY MATRIX STRUCTURE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Adjacency Matrix

Space 𝑂(𝑛2)

outDegree 𝑣 ,

outgoingEdges 𝑣
𝑂 𝑛

getEdge(𝑢, 𝑣),

insertEdge(𝑢, 𝑣, 𝑤),

removeEdge(𝑒)

𝑂(1)

insertVertex(𝑥),

removeVertex(𝑣)
𝑂 𝑛2

0 1 2 3 4

0 ∅ ∅ {0, 2} {0, 3} ∅

1 ∅ ∅ {1, 2} {1, 3} {1, 4}

2 {0, 2} {1, 2} ∅ ∅ ∅

3 {0, 3} {1, 3} ∅ ∅ {3, 4}

4 ∅ {1, 4} ∅ {3, 4} ∅

ASYMPTOTIC PERFORMANCE

• 𝑛 vertices, 𝑚 edges

• No parallel edges

• No self-loops

Edge
List

Adjacency
List

Adjacency
Matrix

Space 𝑂(𝑛 +𝑚) 𝑂(𝑛 + 𝑚) 𝑂 𝑛2

outgoingEdges(𝑣) 𝑂(𝑚) 𝑂 deg 𝑣 𝑂 𝑛

getEdge(𝑢, 𝑣) 𝑂 𝑚 𝑂 min deg 𝑣 , deg 𝑤 𝑂 1

insertEdge(𝑢, 𝑣, 𝑤) 𝑂(𝑚) 𝑂(min deg 𝑣 , deg 𝑤) 𝑂 1

eraseEdge(𝑒) 𝑂 1 𝑂 1 𝑂 1

insertVertex(𝑥) 𝑂 1 𝑂 1 𝑂(𝑛2)

removeVertex(𝑣) 𝑂(𝑚) 𝑂 deg 𝑣 𝑂 𝑛2

