O

N

LT
i

01
1| *T1 025-612-0001
2 | =1 981-101-0002
3|
4| 14— 451-229-0004

CHAPTER 10
MAPS, HASH TABLES, AND SKIP LISTS

ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND
GOLDWASSER (WILEY 2016)

MAPS

*A models a searchable collection of key-value entries
®* The main operations of a map are for searching, inserting, and deleting items
® Multiple entries with the same key are allowed

® Applications:
® address book

®* student-record database

®* Often called

THE MAP ADT

Integer , Boolean

Value : if the map M has an entry with key k, return its associated value;
else, return null

Value : insert entry (k, V) into the map M; if key k is not already in
M, then return null; else, return old value associated with k

Value : if the map M has an entry with key k, remove it from M and
return its associated value; else, return null

ITterable : return an iterable collection of the keys in M

ITterable : return an iterable collection of the values in M

ITterable : return an iterable collection of the entries in M

1 EXAMPLE

O

/|

A~ A~ A~ A~ A~

””””

S Nt S S S SN

””””

A~ N N N o~ N A~~~

,,,,,,,,

S’ S N N S S S S

,,,,,,,,

A~ N N o~ N A~ A~ A~ A~ A~ M~ o~

,,,,,,,,,,

P W S T W T W W T T T g

,,,,,,,,,

A~ N N N N N N N o~ A~ A~~~ A~

L L . A A A" o m omow
O O W W0 LwWwLwWwLwWwLw.Lwwrr~ o~~~
M@ (((((((((((((
—)
3 O~ — — — — 0
= 3 4 — — — —~ —
2 4 03 3 3) S5 @
Opcgccoumem<c<TImEg X
)))))) LO N =
cC >N M O A E N >
O P U 8 8N N N~~~ —~ 00V~ P
.mp57282742(vv2p
rm ((((((((eOO(m
O P PP PP PP P NEEPM
O n 3 35 3 3 3 0 0O O0O-H OO0 O W
O+~ 000000000 Y4 Y9 O -
e O o o o o o oo o o oo o o o o

K\O
1\] LIST-BASED MAP

/)
O
® We can implement a map with an unsorted list
® Store the entries in arbitrary order
* Complexity of get, put, remove?
l * 0(n) on put, get, and remove
O

OO O

/O

1§ DIRECT ADDRESS TABLE MAP IMPLEMENTATION g

/]
O ° 3 3]
® A direct address table is a map in which
* The keys are in the range [0, N|]
® Stored in an array T of size N
® Entry with key k stored in T[k]
l ® Performance:
* put (k, v),get (k), and remove (k) all take O(1) time
Cf * Space - requires space O(N), independent of n, the number of entries stored in the map
O

®* The direct address table is not space efficient unless the range of the keys is close to
the number of elements to be stored in the map, i.e., unless 1 is close to V.

1\0 SORTED MAP

/
O .
* A supports the usual map ® Sorted Map ADT adds the following
operations, but also maintains an order functionality to a map
relation for the keys. , —
A\ return iterators to entries with the smallest
Naturally supports :
and largest keys, respectively
- store dictionary in
o 14
an array by non-decreasing order of the e e raitor
keys
to the least/greatest key value greater
P * Utilizes binary search than/less than or equal to k
g 4
— return an

iterator to the greatest/least key value
less than /greater than k

® efc

Q\o 4
1\] SORTED SEARCH TABLE ¢

O

® We can implement a sorted map with a sorted list

* Complexity of get, put, remove?

* 0(n) on put and remove

DO
A,

1\) BINARY SEARCH

/
O
® Binary search performs operation on a sorted search table
® similar to the high-low game
® at each step, the number of candidate items is halved
l * terminates after a logarithmic number of steps

* Example
ol
(5) ©
©

1\0 SIMPLE MAP IMPLEMENTATION SUMMARY

O

Direct Address Table O(N)

l Sorted Search Table 0(n) O(logn) | 0(n)
(Naturally supports Sorted Map)

O

)
[s

1\0 DEFINITIONS

* A is an unordered collection of elements, without duplicates that typically
supports efficient membership tests.

* Elements of a set are like keys of a map, but without any auxiliary values.

*A (also known as a bag) is a set-like container that allows duplicates.

*A (also known as a dictionary) is similar to a traditional map, in that
it associates values with keys; however, in a multimap the same key can be
mapped to multiple values.

®* For example, the index of a book maps a given term to one or more locations at which

the term occurs.

Adds the element e to § (if not already present).

(e

remove(e): Removes the element e from S (if it is present).

1\\5 SET ADT

O contains(e

Returns whether e is an element of S.

iterator(): Returns an iterator of the elements of S.

There is also support for the traditional mathematical set operations of union,
intersection, and subtraction of two sets S and 7':

SUT {e: eisinSoreisinT},
SNT {e: eisinSand eisin T},

S—T {e: eisinSand eisnotinT}.

O addAll(T): Updates S to also include all elements of set 7', effec-
tively replacing S by SUT.

retainAll(7): Updates S so that it only keeps those elements that are
also elements of set T, effectively replacing S by SNT.
removeAll(7): Updates S by removing any of its elements that also occur
in set 7', effectively replacing S by S — 7.

1\\5 GENERIC MERGING

O

®* Generalized merge of two sorted lists A
and B

®* Template method genericMerge
® Auxiliary methods

® alsless

® bIslLess

®* bothAreEqual

®* Runsin O(nygy + ng) time provided the
;:) auxiliary methods run in O(1) time

1. S0

O O Joy Ul W

10.
11.
12.
14.

16.

genericMerge (A, B)

Sets A,B as sorted lists

Set S

—A.isEmpty () A=B.isEmpty ()

a<—A.first(); b« B.first()

a<b
//generic action
A.removeFirst ();
b<a
//generic action
B .removeFirst ()
//a=Db
//generic action
A.removeFirst(); B.removeFirst ()
—A.isEmpty ()
; A.eraseFront ()
=B .isEmpty ()
; B.removeFirst ()

S

1\\5 USING GENERIC MERGE FOR SET OPERATIONS f

/
O

* Any of the set operations can be implemented using a generic merge

® For example:

® For intersection: only copy elements that are duplicated in both list
l ® For union: copy every element from both lists except for the duplicates
O ® All methods run in linear time L2 YT, vy
e

/7 G

S—2a
e

1\) MULTIMAP

/
O
* A is similar to a map, except that it can store multiple entries with
the same key
®* We can implement a multimap M by means of a map M’
l ® For every key k in M, let E(k) be the list of entries of M with key k

®* The entries of M’ are the pairs (k, E (k))

[5

MULITMAPS

get(k):
put(k, v):
remove(k, v):

removeAll(k):

size():

entries():
keys():

keySet():

values():

Returns a collection of all values associated with key k in the
multimap.

Adds a new entry to the multimap associating key k with
value v, without overwriting any existing mappings for key k.
Removes an entry mapping key k to value v from the multimap
(if one exists).

Removes all entries having key equal to k from the multimap.
Returns the number of entries of the multiset

(including multiple associations).

Returns a collection of all entries in the multimap.

Returns a collection of keys for all entries in the multimap
(including duplicates for keys with multiple bindings).
Returns a nonduplicative collection of keys in the multimap.

Returns a collection of values for all entries in the multimap.

1\\5 INTUITIVE NOTION OF A MAP

/
O
® Intuitively, a map M supports the abstraction of using keys as indices with a
syntax such as M|k].
®* As a mental warm-up, consider a restricted setting in which a map with n items
l uses keys that are known to be integers in a range from 0 to N — 1, for some

N = n.

[7

9 10

0 1 2> 3 4 5 6 7 2
o] Jz| | fcefof | |

1§ MORE GENERAL KINDS OF KEYS

/
O
® But what should we do if our keys are not integers in the range from 0O to
N-12
® Use a to map general keys to corresponding indices in a table.

l ® For instance, the last four digits of a Social Security number.

%
O 1 | =11 025-612-0001

? | | 981-101-0002
3T
4 | «1+—1{ 451-229-0004

HASH TABLES

'AA’U

Y/ // /]
v’/ /
v /.

Y

° A h(k) - [0,N — 1]
* The integer h(k) is referred to as the of key k

* Example - h(k) = k mod N could be a hash function for integers

consist of
®* A hash function h

* Array A of size N (either to an element itself or to a “bucket”)

® Goal is to store elements (k, V) at index i = h(k)

1§ ISSUES WITH HASH TABLES

/]
O
® Issues
* Collisions - some keys will map to the same index of H (otherwise we have a Direct
Address Table).
l ® Chaining - put values that hash to same location in a linked list (or a “bucket”)
®* Open addressing - if a collision occurs, have a method to select another location in the table.

®* Load factor
p ® Rehashing

O

[o

1\) EXAMPLE

®* We design a hash table for a Map
storing items (SSN, Name), where
SSN (social security number) is a

nine-digit positive integer

® Our hash table uses an array of size
N = 10,000 and the hash function
h(k) = last four digits of k

A wWwpNhNDE-E O

9997
9998
9999

%)
—— 025-612-0001
——{ 981-101-0002
%)
—— 451-229-0004
%)
1 200-751-9998
%)

1\\5 HASH FUNCTIONS

/
O
® A hash function is usually specified
as the composition of two functions:
l h{: keys — integers

T ;3 h,: integers —> [0, N — 1]

®* The hash code is applied first, and
the compression function is applied

next on the result, i.e.,
h(k) = h, (h1(k))

®* The goal of the hash function is to
“disperse” the keys in an apparently

random way

1\0 HASH CODES

O

®* We reinterpret the memory address of the
key object as an integer

®* Good in general, except for numeric and

l string keys

®* We reinterpret the bits of the key as an
integer

P * Suitable for keys of length less than or equal
- to the number of bits of the integer type (e.g.,
byte, short, int and float in C++)

®* We partition the bits of the key into
components of fixed length (e.g., 16 or
32 bits) and we sum the components
(ignoring overflows)

® Suitable for numeric keys of fixed
length greater than or equal to the
number of bits of the integer type (e.g.,
long and double in C++)

O

[o

®* We partition the bits of the key into a

1\0 HASH CODES

) ® like polynomial accumulation except
sequence of components of fixed length POLY P

(e.g., 8, 16 or 32 bits) use bit shifts instead of multiplications

AgQq . Ap—q and bitwise or instead of addition

We evaluate the polynomial

p(z) =ag+az+ ayz* + -+ a, 1z
at a fixed value z, ignoring overflows numbers as well by converting the
Especially suitable for strings (e.g., the

n-1 ® Can be used on floating point

o : . number to an array of characters
choice z = 33 gives at most 6 collisions on a

set of 50,000 English words)

1\\5 COMPRESSION FUNCTIONS

/
O
* hy,(k) =kmodN * h,(k) = (ak + b) mod N
®* The size N of the hash table is usually ®* a and b are nonnegative integers such
l chosen to be a prime that
® The reason has to do with number amod N # 0
theory and is beyond the scope of this ® Otherwise, every integer would map to

f) course the same value b
O

LN
\

O

[7

COLLISION RESOLUTION WITH

SEPARATE CHAINING

occur when different
elements are mapped to the same

cell

: let each cell in
the table point to a linked list of

entries that map there

S A e

® Chaining is simple, but requires

additional memory outside the table

DWN RO
? |IQ|Q] 7 |Q

» 025-612-0001

* 451-229-0004

981-101-0004

EXERCISE
SEPARATE CHAINING

* Assume you have a hash table H with N = 9 slots (A[0 — 8]) and let the hash
function be h(k) = k mod N

®* Demonstrate (by picture) the insertion of the following keys into a hash table
with collisions resolved by chaining

®5,28,19,15,20,33,12,17,10

COLLISION RESOLUTION WITH
OPEN ADDRESSING - LINEAR PROBING

® In the colliding item is) Example-

- : * h(k) = kmod 13
handles collisions by placing
the colliding item in the next (circularly) ® Insert keys 18, 41, 22, 44, 59, 32, 31,
available table cell. So the ith cell checked is: 73, in this order

h(k,i) = |h(k) + ilmod N

placed in a different cell of the table

®* Each table cell inspected is referred to as a

probe 0123456738 9101112

* Colliding items lump together, causing future ! !
collisions to cause a longer

41 18|44159|32|22(31|7/3
0123456 738 9101112

K\) 4
1\0 SEARCH WITH LINEAR PROBING % (

/
O ® Consider a hash table A that uses linear probing get (k)
Key k
: Value 1f k exists, otherwise
®* We start at cell h(k) 1. i — h(k)
® We probe consecutive locations until one of the 2. D«
following occurs
l ® An item with key k is found, or 4 . g A[l]
®* An empty cell is found, or 5. dll
® N cells have been unsuccessfully probed 6 .
7. c.key()=k
;) 8. c
) £
10. i< (+1)modN
11. p<p+

p=N

1§ UPDATES WITH LINEAR PROBING

/
O . :
® To handle insertions and deletions, we
introduce a special object, called * We start at cell h(k)
, which replaces deleted ®* We probe consecutive cells to
elements ® Find that the key exists (so replace the
element)
. . .
e We search for an item with key k A cell i is found that is either empty or
stores DEFUNCT (so we insert)
° H i
p If such an item (k’ v) BuEine, v ® N cells have been unsuccessfully

replace it with the special item DEFUNCT
probed (so the table is full)

® Else, we return null

EXERCISE
OPEN ADDRESSING — LINEAR PROBING

* Assume you have a hash table H with N = 11 slots (A[0 — 10]) and let the
hash function be h(k) = k mod N

®* Demonstrate (by picture) the insertion of the following keys into a hash table
with collisions resolved by linear probing.

®10,22,31,4,15, 28,17, 88, 59

COLLISION RESOLUTION WITH
OPEN ADDRESSING — QUADRATIC PROBING

® Linear probing has an issue with

® Another strategy called quadratic probing uses a hash function
h(k,i) = (h(k) + i*) mod N
fori=0,1,..., N -1

® This can still cause

OPEN ADDRESSING - DOUBLE HASHING

\; T
mﬁ'
1\\5 COLLISION RESOLUTION WITH (‘\}V}ll

/
O
uses a secondary hash ® Common choice of compression map
func’r.lon h, (k) q.nd hom.dles coI.I|S|ons by B EEsnia hash function:
placing an item in the first available cell of
the series h,(k) = q — (kmod q)
h(k,i) = (hy(k) + ih,(k)) mod N where
fori =0,1,...,N —1

*q<N

® g is aprime
have zero values

T * The secondary hash function h, (k) cannot

. .
. ® The table size N must be a prime to allow The possible values for h; (k) o=

probing of all the cells 1,2,.., q

O

® In the worst case, searches, insertions and removals
on a hash table take O(n) time

® The worst case occurs when all the keys inserted into

the map collide

®* The
a hash table

® Assuming that the hash values are like random

n
a=— affects the performance of

numbers, it can be shown that the expected number

P of probes for an insertion with open addressing is
- 1 1 1 N

1—0c=1—n/N_N—n/N_

N—n

1\\5 PERFORMANCE OF HASHING

®* The expected running time of all the Map
ADT operations in a hash table is 0(1)

® In practice, hashing is very fast provided the

load factor is not close to 100%

* Applications of hash tables
®* Small databases
* Compilers

® Browser caches

1§ UNIFORM HASHING ASSUMPTION

/]
O
®* The of a key k is the sequence of slots probed when looking for k
®* In open addressing, the probe sequence is h(k,0),h(k,1),...,h(k,N — 1)
l ® Each key is equally likely to have any one of the N! permutations of {0,1,..., N — 1} as is
probe sequence
T ® Note: Linear probing and double hashing are far from achieving Uniform Hashing
p * Linear probing: N distinct probe sequences

* Double Hashing: N? distinct probe sequences

O

)
[s

1§ PERFORMANCE OF UNIFORM HASHING

®* Theorem: Assuming uniform hashing and an open-address hash table with load

n 4 .
factor @ = = < 1, the expected number of probes in an unsuccessful search is

1

at most —.
1-a

® Exercise: compute the expected number of probes in an unsuccessful search in

1 3 99
a=-,and a = —.

an open address hash table with @ = —,
2 4 100

1\) ON REHASHING

/
O
* Keeping the load factor low is vital for performance
® When resizing the table:
* Reallocate space for the array (of size that is a prime)
l ® Design a new hash function (new parameters) for the new array size (practically, change

the mod)

T p ®* For each item you reinsert into the table rehash

l\.\ﬁ SUMMARY MAPS (SO FAR)

O

put (k, V) get (k) Space

Direct Address Table 0(1)

Sorted Search Table 0(n) O(logn) 0(n)
(Naturally supported Sorted Map)
Hashing 0 () O(n+ N)
O (chaining)
Hashing 0 O(N)
P (open addressing)

1\.\5 INTERVIEW QUESTION 1

O

® You are given an array of integers A in the range [0, M| and an integer x.
Design an efficient function to find a pair of elements in A that sum to X, or

report than none exists.

!
[o

1§ INTERVIEW QUESTION 2

O

® You are given two positional lists. Design efficient functions for computing the

union and intersection of the lists.

!
[p

