
CH9.
PRIORITY QUEUES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH 

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND 

GOLDWASSER (WILEY 2016)



PRIORITY QUEUES

• Stores a collection of elements each with an associated “key” value

• Can insert as many elements in any order

• Only can inspect and remove a single element – the minimum (or maximum depending) 

element

• Applications

• Standby Flyers

• Auctions

• Stock market



PRIORITY QUEUE ADT

• A priority queue stores a collection of 

entries

• Each entry is a pair (key, value)

• Main methods of the Priority Queue ADT

• Entry insert(k, v)

inserts an entry with key k and value v

• Entry removeMin()

removes and returns the entry with smallest 

key, or null if the the priority queue is empty

• Additional methods

• Entry min()
returns, but does not remove, an entry 

with smallest key, or null if the the

priority queue is empty

• size(), isEmpty()



TOTAL ORDER RELATION

• Keys in a priority queue can be 

arbitrary objects on which an order 

is defined, e.g., integers

• Two distinct items in a priority queue 

can have the same key

• Mathematical concept of total order 

relation 

• Reflexive property:

𝑘 ≤ 𝑘

• Antisymmetric property:

if k1 ≤ 𝑘2 and 𝑘2 ≤ 𝑘1, then 𝑘1 = 𝑘2

• Transitive property:

if 𝑘1 ≤ 𝑘2 and 𝑘2 ≤ 𝑘3 then 𝑘1 ≤ 𝑘3



ENTRY ADT

• An entry in a priority queue is simply a key-value pair

• Priority queues store entries to allow for efficient insertion and removal based 

on keys

• Methods:

• Key getKey(): returns the key for this entry

• Value getValue(): returns the value associated with this entry



COMPARATOR ADT

• A comparator encapsulates the action 

of comparing two objects according to 

a given total order relation

• A generic priority queue uses an 

auxiliary comparator, i.e., it is external 

to the keys being compared

• When the priority queue needs to 

compare two keys, it uses its 

comparator

• Primary method of the Comparator 

ADT

• Integer compare(x, y): returns 

an integer 𝑖 such that 

• 𝑖 < 0 if 𝑥 < 𝑦,

• 𝑖 = 0 if 𝑥 = 𝑦

• 𝑖 > 0 if 𝑥 > 𝑦

• An error occurs if a and b cannot be 

compared.



PRIORITYQUEUESORT()
SORTING WITH A PRIORITY QUEUE

• We can use a priority queue to sort a set of 

comparable elements

• Insert the elements one by one with a series of 

insert(𝑒) operations

• Remove the elements in sorted order with a 

series of removeMin() operations

• Running time depends on the PQ 

implementation

Algorithm PriorityQueueSort()

Input: List 𝐿 storing 𝑛 elements and a 

Comparator 𝐶
Output: Sorted List 𝐿
1. Priority Queue 𝑃 using comparator 𝐶
2. while ¬𝐿.isEmpty() do
3. 𝑃.insert(𝐿.first())
4. 𝐿.removeFirst()
5. while ¬𝑃.isEmpty() do
6. 𝐿.insertLast(𝑃.min())
7. 𝑃.removeMin()
8. return 𝐿



LIST-BASED PRIORITY QUEUE

Unsorted list implementation

• Store the items of the priority queue in 
a list, in arbitrary order

• Performance:

• insert(e) takes 𝑂(1) time since we can 
insert the item at the beginning or end of the 
list

• removeMin() and min() take 𝑂(𝑛)
time since we have to traverse the entire 
sequence to find the smallest key

Sorted list implementation

• Store the items of the priority queue in
a list, sorted by key

• Performance:

• insert(e) takes 𝑂(𝑛) time since we have 
to find the place where to insert the item

• removeMin() and min() take 𝑂(1)
time since the smallest key is at the beginning 
of the list

4 5 2 3 1 1 2 3 4 5



SELECTION-SORT

• Selection-sort is the variation of PQ-sort where the priority queue is implemented 
with an unsorted list

• Running time of Selection-sort:
• Inserting the elements into the priority queue with 𝑛 insert(e) operations takes 𝑂(𝑛)

time

• Removing the elements in sorted order from the priority queue with 𝑛 removeMin()
operations takes time proportional to

 

𝑖=0

𝑛

𝑛 − 𝑖 = 𝑛 + 𝑛 − 1 +⋯+ 2 + 1 = 𝑂 𝑛2

• Selection-sort runs in 𝑂 𝑛2 time 

4 5 2 3 1



EXERCISE
SELECTION-SORT

• Selection-sort is the variation of PQ-sort where the priority queue is 
implemented with an unsorted list (do 𝑛 insert(e) and then 𝑛
removeMin())

• Illustrate the performance of selection-sort on the following input sequence:

• (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)

4 5 2 3 1



INSERTION-SORT

• Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted List

• Running time of Insertion-sort:

• Inserting the elements into the priority queue with 𝑛 insert(e) operations takes time proportional to

 

𝑖=0

𝑛

𝑖 = 1 + 2 + ⋯+ 𝑛 = 𝑂 𝑛2

• Removing the elements in sorted order from the priority queue with a series of 𝑛 removeMin() operations 

takes 𝑂 𝑛 time

• Insertion-sort runs in 𝑂 𝑛2 time 

1 2 3 4 5



EXERCISE
INSERTION-SORT

• Insertion-sort is the variation of PQ-sort where the priority queue is 
implemented with a sorted list (do 𝑛 insert(e) and then 𝑛
removeMin())

• Illustrate the performance of insertion-sort on the following input sequence:

• (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)

1 2 3 4 5



IN-PLACE INSERTION-SORT

• Instead of using an external data 
structure, we can implement selection-
sort and insertion-sort in-place (only 
𝑂(1) extra storage)

• A portion of the input list itself serves as 
the priority queue

• For in-place insertion-sort

• We keep sorted the initial portion of 
the list

• We can use swap(𝑖, 𝑗) instead of 
modifying the list

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5



HEAPS

2

65

79



WHAT IS A HEAP?

• A heap is a binary tree storing keys at 
its internal nodes and satisfying the 
following properties:
• Heap-Order: for every node 𝑣 other 

than the root,
key 𝑣 ≥ key(𝑣. parent())

• Complete Binary Tree: let ℎ be the height 
of the heap

• for 𝑖 = 0…ℎ − 1, there are 2𝑖 nodes on 
level 𝑖

• at level ℎ − 1, nodes are filled from left 
to right

• Can be used to store a priority queue 
efficiently

2

65

79

last node



HEIGHT OF A HEAP

• Theorem: A heap storing 𝑛 keys has height 𝑂 log𝑛

• Proof: (we apply the complete binary tree property)

• Let ℎ be the height of a heap storing ℎ keys

• Since there are 2𝑖 keys at level 𝑖 = 0…ℎ − 1 and at least one key on level ℎ, we have 

𝑛 ≥ 1 + 2 + 4 +⋯+ 2ℎ−1 + 1 = 2ℎ − 1 + 1 = 2ℎ

• Level ℎ has at most 2ℎ nodes: 𝑛 ≤ 2ℎ+1 − 1

• Thus, log n + 1 − 1 ≤ ℎ ≤ log𝑛 ∎

1

2

2ℎ−1

1

keys

0

1

𝒉 − 𝟏

𝒉

depth



EXERCISE
HEAPS

• Let 𝐻 be a heap with 7 distinct elements (1, 2, 3, 4, 5, 6, and 7). Is it possible 

that a preorder traversal visits the elements in sorted order? What about an 

inorder traversal or a postorder traversal? In each case, either show such a 

heap or prove that none exists.



INSERTION INTO A HEAP

• insert(𝑒)consists of three steps

• Find the insertion node 𝑧 (the new last 

node)

• Store 𝑒 at 𝑧 and expand 𝑧 into an 

internal node

• Restore the heap-order property 

(discussed next)

2

65

79

insertion node

2

65

79 1

z

z



UPHEAP
• After the insertion of a new element 𝑒, the heap-order property may be violated

• Up-heap bubbling restores the heap-order property by swapping 𝑒 along an upward path 

from the insertion node

• Upheap terminates when 𝑒 reaches the root or a node whose parent has a key smaller than 

or equal to key(𝑒)

• Since a heap has height 𝑂(log 𝑛), upheap runs in 𝑂 log𝑛 time

2

15

79 6
z

1

25

79 6
z



REMOVAL FROM A HEAP

• removeMin() corresponds to the 

removal of the root from the heap

• The removal algorithm consists of 
three steps

• Replace the root with the element of 
the last node 𝑤

• Compress 𝑤 and its children into a leaf

• Restore the heap-order property 
(discussed next)

2

65

79

last node

w

7

65

9

w



DOWNHEAP

• After replacing the root element of the last node, the heap-order property may be violated

• Down-heap bubbling restores the heap-order property by swapping element 𝑒 along a 

downward path from the root

• Downheap terminates when 𝑒 reaches a leaf or a node whose children have keys greater 

than or equal to key(𝑒)

• Since a heap has height 𝑂 log𝑛 , downheap runs in 𝑂(log 𝑛) time

7

65

9

w

5

67

9

w



UPDATING THE LAST NODE

• The insertion node can be found by traversing a path of O(log n) nodes

• Go up until a left child or the root is reached

• If a left child is reached, go to the right child

• Go down left until a leaf is reached

• Similar algorithm for updating the last node after a removal



HEAP-SORT 

• Consider a priority queue with 𝑛

items implemented by means of a 

heap

• the space used is 𝑂(𝑛)

• insert(e) and removeMin()

take 𝑂 log𝑛 time

• min(), size(), and empty()

take 𝑂 1 time

• Using a heap-based priority queue, 
we can sort a sequence of 𝑛
elements in 𝑂(𝑛 log 𝑛) time

• The resulting algorithm is called 
heap-sort

• Heap-sort is much faster than 
quadratic sorting algorithms, such as 
insertion-sort and selection-sort



EXERCISE
HEAP-SORT

• Heap-sort is the variation of PQ-sort where the priority queue is implemented 
with a heap (do 𝑛 insert(e) and then 𝑛 removeMin())

• Illustrate the performance of heap-sort on the following input sequence (draw 
the heap at each step):

• (22, 15, 36, 44, 10, 3, 9, 13, 29, 25)



ARRAY-BASED HEAP IMPLEMENTATION

• We can represent a heap with 𝑛 elements 
by means of a vector of length 𝑛
• Links between nodes are not explicitly stored

• The leaves are not represented

• The cell at index 0 is the root

• For the node at index 𝑖
• the left child is at index 2𝑖 + 1

• the right child is at index 2𝑖 + 2

• insert(e) corresponds to inserting at 
index 𝑛 + 1

• removeMin()corresponds to removing 
element at index 𝑛

• Yields in-place heap-sort

2

65

79

2 5 6 9 7

1 2 3 40



PRIORITY QUEUE SUMMARY

insert(e) removeMin() PQ-Sort total

Ordered List

(Insertion Sort)

𝑂(𝑛) 𝑂(1) 𝑂(𝑛2)

Unordered List

(Selection Sort)

𝑂(1) 𝑂(𝑛) 𝑂(𝑛2)

Binary Heap, 

Vector-based Heap

(Heap Sort)

𝑂 log𝑛 𝑂 log𝑛 𝑂 𝑛 log 𝑛



MERGING TWO HEAPS

• We are given two two heaps and a 

new element 𝑒

• We create a new heap with a root 

node storing 𝑒 and with the two 

heaps as subtrees

• We perform downheap to restore 

the heap-order property 

7

3

58

2

64

3

58

2

64

2

3

58

4

67



BOTTOM-UP HEAP CONSTRUCTION

• We can construct a heap storing 𝑛

given elements in using a bottom-up 

construction with log 𝑛 phases

• In phase 𝑖, pairs of heaps with 2𝑖 − 1

elements are merged into heaps with 

2𝑖+1 − 1 elements

2i -1 2i -1

2i+1-1



EXAMPLE

1516 124 76 2023

25

1516

5

124

11

76

27

2023



EXAMPLE

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

20

2723



EXAMPLE

7

15

2516

4

125

8

6

911

20

2723

4

15

2516

5

127

6

8

911

20

2723



EXAMPLE

4

15

2516

5

127

10

6

8

911

20

2723

5

15

2516

7

1210

4

6

8

911

20

2723



ANALYSIS

• We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly 

goes left until the bottom of the heap (this path may differ from the actual downheap path)

• Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is 

𝑂(𝑛)

• Thus, bottom-up heap construction runs in 𝑂(𝑛) time 

• Bottom-up heap construction is faster than 𝑛 successive insertions and speeds up the first phase of heap-sort



ADAPTABLE PRIORITY QUEUES

• One weakness of the priority queues so far is that we do not have an ability to 

update individual entries, like in a changing price market or bidding service

• Recall that insert(e) returns an entry. We need to save these values to be able 

to adapt them

• Additional ADT support (also includes standard priority queue functionality)

• Entry remove(e) – remove a specific entry 𝑒

• Key replaceKey(e, k) – replace the key of entry 𝑒 with 𝑘, and return the old key.

• Value replaceValue(e, k) – replace the value of entry 𝑒 with 𝑘, and return the old 

value.



LOCATION-AWARE ENTRY

• Locators decouple positions and entries 

in order to support efficient adaptable 

priority queue implementations (i.e., in a 

heap)

• Each position has an associated locator

• Each locator stores a pointer to its 

position and memory for the entry

a

g e



POSITIONS VS. LOCATORS 

• Position

• represents a “place” in a data structure

• related to other positions in the data structure 

(e.g., previous/next or parent/child)

• often implemented as a pointer to a node or 

the index of an array cell

• Position-based ADTs (e.g., sequence and tree) 

are fundamental data storage schemes

• Locator

• identifies and tracks a (key, element) item

• unrelated to other locators in the data 

structure

• often implemented as an object storing the 

item and its position in the underlying structure

• Key-based ADTs (e.g., priority queue) can be 

augmented with locator-based methods 


