1N
J\%

° CHO9.
X PRIORITY QUEUES

([ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
}) DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND
O T GOLDWASSER (WILEY 2016)

7

K\)
1\0 PRIORITY QUEUES T

O

® Stores a collection of elements each with an associated “key” value

® Can insert as many elements in any order

® Only can inspect and remove a single element — the minimum (or maximum depending)
l element
® Applications
® Standby Flyers
P ® Auctions

® Stock market

PRIORITY QUEUE ADT

® A priority queue stores a collection of

entries

® Each

is a pair (key, value)

®* Main methods of the Priority Queue ADT

Entry (k, v)
inserts an entry with key k and value v
Entry ()

removes and returns the entry with smallest

key, or null if the the priority queue is empty

®* Additional methods

® Entry ()

returns, but does not remove, an entry
with smallest key, or null if the the

priority queue is empty

(), ()

1§ TOTAL ORDER RELATION

/
O
* Keys in a priority queue can be
arbitrary objects on which an order
is defined, e.g., integers
l ®* Two distinct items in a priority queue

can have the same key

[5

~—— ——————

L
I
=

®* Mathematical concept of total order

relation <
o
k<k

if kl < kz and k2 < kl! then kl — kz

if kl S kz and k2 S k3 then kl < k3

ENTRY ADT

® An entry in a priority queue is simply o

® Priority queues store entries to allow for efficient insertion and removal based

on keys

®* Methods:

®* Key () : returns the key for this entry

®* Value () : returns the value associated with this entry

1§ COMPARATOR ADT

/
O
®* A comparator encapsulates the action ® Primary method of the Comparator
of comparing two objects according to ADT
a given total order relation
® Integer (x, Vy):returns
® A generic priority queue uses an an integer i such that
auxiliary comparator, i.e., it is external L s
. l X ,
to the keys being compared | 4
*i =0ifx=y
T ®* When the priority queue needs to ¢« > 0ifx>y
% compare two keys, it uses its

® An error occurs if a and b cannot be
comparator
compared.

PRIORITYQUEUESORT()
SORTING WITH A PRIORITY QUEUE

We can use a priority queue to sort a set of PriorityQueueSort ()
comparable elements : List L storing n elements and a
Comparator C

Sorted List L

1. Priority Queue P using comparator C
® Remove the elements in sorted order with a —L.isEmpty()

Insert the elements one by one with a series of
insert(e) operations

series of removeMin() operations 3. P.insert(L.first())
® Running time depends on the PQ 4. L.remolveFirst()
implementation lﬁP.lsEmpty() ,
©. L.insertLast(P.min())
7. P.removeMin()

L

LIST-BASED PRIORITY QUEUE

Unsorted list implementation

* Store the items of the priority queue in
a list, in arbitrary order
@

@®—06G—@0G
® Performance:

takes O(1) time since we can
insert the item at the beginning or end of the
list
and LCRUED)
time since we have to traverse the entire
sequence to find the smallest key

Sorted list implementation

® Store the items of the priority queue in
a list, sorted by key
®

@®—0—0

(1)
<@ <O
® Performance:

&

takes O(n) time since we have
to find the place where to insert the item

and take 0(1)

time since the smallest key is at the beginning
of the list

a7,
i/}%
SELECTION-SORT ‘§

® Selection-sort is the variation of PQ-sort where the priority queue is implemented

with an unsorted list
@®—6B—0@ 60

® Running time of Selection-sort:
l * Inserting the elements into the priority queue with n insert (e) operations takes O(n)

time
* Removing the elements in sorted order from the priority queue with n removeMin ()
(f operations takes time proportional to
O

n
zn—i=n+(n—1)+--~+2+1 = 0(n?)
i=0

* Selection-sort runs in 0(n?) time

o N
EXERCISE &i;g%é? (

SELECTION-SORT

® Selection-sort is the variation of PQ-sort where the priority queue is
implemented with an unsorted list (do n insert (e) and thenn

removeMin ()) @O—06)—02—3)—

® lllustrate the performance of selection-sort on the following input sequence:
* (22,15, 36, 44,10, 3,9, 13, 29, 25)

INSERTION-SORT

® Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted List

0200106

® Inserting the elements into the priority queue with n insert (e) operations takes time proportional to
n

Zi= 1+2+--+n=0(n?
i=0
® Removing the elements in sorted order from the priority queue with a series of n removeMin () operations
takes 0 (n) time

® Running time of Insertion-sort:

® Insertion-sort runs in O(nz) time

K EXERCISE
1 INSERTION-SORT

® Insertion-sort is the variation of PQ-sort where the priority queue is
implemented with a sorted list (do n insert (e) and then n

removeMin ())
Q@616

l ® lllustrate the performance of insertion-sort on the following input sequence:
* (22,15, 36, 44,10, 3,9, 13, 29, 25)

1\.\5 IN-PLACE INSERTION-SORT

/
O * Instead of using an external data
structure, we can implement selection-
sort and insertion-sort
® A portion of the input list itself serves as
the priority queue
® For in-place insertion-sort
Cf * We keep sorted the initial portion of
the list
O

®* We can use swap(i,j) instead of
modifying the list

®&—>@—® @
5—@—@

® ® 6
®

®

@
®

@
@
@

®
®

%

® ® @
@

@

®

® ©
® ©® €

®

WHAT IS A HEAP?

®* A heap is a binary tree storing keys at
its internal nodes and satisfying the
following properties:

for every node v other
than the root,

key(v) = key(v. parent())
let h be the height

of the heap
* fori =0..h—1, there are 2! nodes on
level i
;) * atlevel h — 1, nodes are filled from left
~ to right

®* Can be used to store a priority queue
efficiently

last node

&

1§ HEIGHT OF A HEAP
A heap storing n keys has height O (logn) |

O

(we apply the complete binary tree property)

Let h be the height of a heap storing h keys

Since there are 2! keys at level i = 0...h — 1 and at least one key on level h, we have
n=1+2+4+-+214+1=(2"r-1)+1=2"

Level h has at most 2" nodes: n < 21 — 1

Thus,logln+1) -1 <h <logn m

O_/

depth keys

/o .

K EXERCISE
1\) HEAPS

/
O
®* Let H be a heap with 7 distinct elements (1, 2, 3, 4, 5, 6, and 7). Is it possible
that a preorder traversal visits the elements in sorted order? What about an
inorder traversal or a postorder traversal? In each case, either show such a
l heap or prove that none exists.

[o

1\\5 INSERTION INTO A HEAP

/
O
consists of three steps
® Find the insertion node Z (the new last
node)
l ® Store e at Z and expand z into an
internal node

® Restore the heap-order property
;) (discussed next)
()

* After the insertion of a new element e, the heap-order property may be violated

* K\) 1
1\) UPHEAP ¢

O restores the heap-order property by swapping e along an upward path

from the insertion node

®* Upheap terminates when e reaches the root or a node whose parent has a key smaller than
l or equal to key(e)

* Since a heap has height O(logn), upheap runs in O(logn) time

O

!
[o

1§ REMOVAL FROM A HEAP

corresponds to the
removal of the root from the heap

®* The removal algorithm consists of
three steps

* Replace the root with the element of
the last node w

®* Compress W and its children into a leaf

® Restore the heap-order property
(discussed next)

last node

DOWNHEAP

* After replacing the root element of the last node, the heap-order property may be violated

restores the heap-order property by swapping element e along a

downward path from the root

®* Downheap terminates when e reaches a leaf or a node whose children have keys greater

than or equal to key(e)

* Since a heap has height O(logn), downheap runs in O(logn) time

1§ UPDATING THE LAST NODE

/]
O
® The insertion node can be found by traversing a path of O(log n) nodes
®* Go up until a left child or the root is reached
* If a left child is reached, go to the right child
®* Go down left until a leaf is reached
l ® Similar algorithm for updating the last node after a removal

1\0 HEAP-SORT

/
O
® Consider a priority queue with n
items implemented by means of a
heap
l * the space used is O(n)
and
take O(logn) time
T P , , and

take O(1) time

® Using a heap-based priority queue,
we can sort a sequence of n
elements in O(nlogn) time

® The resulting algorithm is called
heap-sort

®* Heap-sort is much faster than
quadratic sorting algorithms, such as
insertion-sort and selection-sort

EXERCISE
HEAP-SORT

®* Heap-sort is the variation of PQ-sort where the priority queue is implemented
with a heap (don insert (e) and then n removeMin ())

® lllustrate the performance of heap-sort on the following input sequence (draw
the heap at each step):

e (22,15,36,44,10, 3,9, 13, 29, 25)

ARRAY-BASED HEAP IMPLEMENTATION

We can represent a heap with n elements
by means of a vector of length n

® Links between nodes are not explicitly stored
®* The leaves are not represented

®* The cell at index 0 is the root

For the node at index
® the left child is at index 2i + 1
* the right child is at index 2i + 2

insert (e) corresponds to inserting at
indexn + 1

removeMin () corresponds to removing
element at index n

Yields in-place heap-sort

1\] PRIORITY QUEUE SUMMARY. f

Ordered List 0(n) 0(1) 0(n?)
l (Insertion Sort)
Unordered List 0(1) 0(n) 0(n?)
@ (Selection Sort)
Binary Heap, O(logn) O(logn) O(nlogn)
Vector-based Heap
(Heap Sort)
T A

O

!
[p

1§ MERGING TWO HEAPS

®* We are given two two heaps and o

new element e

®* We create a new heap with a root
node storing e and with the two

heaps as subtrees

®* We perform downheap to restore

the heap-order property

1§ BOTTOM-UP HEAP CONSTRUCTION

O
®* We can construct a heap storing n A A
given elements in using a bottom-up
construction with log n phases l
l * In phase i, pairs of heaps with 2t — 1
o elements are merged into heaps with

21+l _ 1 elements

v

b

Q\O
z}\] EXAMPLE

e T
) = e —
—— —_—
N _——
e —_——
—_— —_

K\)
1\) ANALYSIS

We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly
goes left until the bottom of the heap (this path may differ from the actual downheap path)

Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is

0(n)
* Thus, bottom-up heap construction runs in O(n) time

Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort

\\/
g
~
~N
N
~/
~
~
~/

¥
0 I O O

ADAPTABLE PRIORITY QUEUES

®* One weakness of the priority queues so far is that we do not have an ability to

update individual entries, like in a changing price market or bidding service

® Recall that returns an entry. We need to save these values to be able

to adapt them

* Additional ADT support (also includes standard priority queue functionality)

® Entry — remove a specific entry e

* Key — replace the key of entry e with k, and return the old key.

® Value — replace the value of entry e with k, and return the old
P Y

value.

1\\5 LOCATION-AWARE ENTRY

O

decouple positions and entries
in order to support efficient adaptable

priority queue implementations (i.e., in a

l heap)

® Each position has an associated locator

® Each locator stores a pointer to its

/; position and memory for the entry

LN
\

O

[o

POSITIONS VS. LOCATORS

® Position
* represents a “place” in a data structure

* related to other positions in the data structure

(e.g., previous/next or parent/child)

® often implemented as a pointer to a node or

the index of an array cell

® Position-based ADTs (e.g., sequence and tree)

are fundamental data storage schemes

® Locator
* identifies and tracks a (key, element) item

®* unrelated to other locators in the data

structure

® often implemented as an object storing the

item and its position in the underlying structure

* Key-based ADTs (e.g., priority queue) can be

augmented with locator-based methods

