CH
X STACKS QUEUES, AND DEQUES

([ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH
}) DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND
O T GOLDWASSER (WILEY 2016)

?

ABSTRACT DATA TYPES (ADTS)

® An abstract data type (ADT) is an o . i :
abstraction of d dato T Example: ADT modeling a simple stock

* An ADT specifies:

® Data stored

trading system

® The data stored are buy/sell orders

®* Operations on the data ® The operations supported are
® Error conditions associated with operations e order (stock, shares, price)
® order (stock, shares,
price)
* void (order)

® Error conditions:
® Buy/sell a nonexistent stock

® Cancel a nonexistent order

K\)
1\0 STACKS

O

* A data structure similar to a neat stack of something, basically only access to top
element is allowed — also reffered to as LIFO (last-in, first-out) storage

® Direct applications
®* Page-visited history in a Web browser
®* Undo sequence in a text editor

® Chain of method calls in the Java Virtual Machine

® Indirect applications
/;) * Auxiliary data structure for algorithms

®* Component of other data structures

\ EXAMPLE STACK
1 METHOD STACK IN THE JVM

/
O 3 . .
The Java Virtual Machine (JVM) keeps main () {
track of the chain of active methods _ e
with a stack int 1 = 5;
® When a methods is called, the JYM £oo (1) ;
pushes on the stack a frame containing }
l local variables and return value _ |
® When a method ends, its frame is foc-) el . {
O popped from the stack and control is int k = j+1;
passed to the method on top of the bar (k) ;
stack
}
\ bar (int m) {
e }

O

N
\

/5

THE STACK ADT

®* The ADT stores arbitrary objects

® |Insertions and deletions follow the
scheme

® Main stack operations:
: inserts element e at the top of
the stack

®* Element
the top element of the stack (last inserted
element)

: removes and returns

® Auxiliary stack operations:

®* Element
the top element without removing it

: returns reference to

® Integer : returns the number

of elements in the stack

® Boolean : a Boolean

value indicating whether the stack is
empty
* Attempting the execution of or
on an empty stack return

O

1§ EXAMPLE STACK INTERFACE IN JAVA

public interface Stack<E> {

int size () ;

boolean isEmpty () ;

l E top();

void push (E e);
E pop();

/**
/**
/**
/**
/**

Return number of elements */
True 1s size is 0 */

Return visible stack element */
Add to the stack */

Remove from the stack */

1§ EXERCISE: STACKS

- ® lllustrate the following operations starting with an empty stack
® push (8)
®* push(3)
* pop ()
l * push ()
® push (D)

* pop ()
j) * pop ()
f) ®* push (9)

®* push (1)

WHAT HAPPENS WHEN AN OPERATION IS INVALID?
LIKE POP ON AN EMPTY STACK.

® It is a design decision! ® In our Stack ADT, we did not use

* Attempting the execution of an exceptions

operation of an ADT may sometimes)
® Instead, we allow operations pop
cause an

and top to be performed even if the
® Java supports a general abstraction for))
: stack is empty by returning
errors, called . Exceptions are
said to be by an operation that

cannot be properly executed

1 ARRAY-BASED STACK

* A simple way of implementing the Stack

size ()
ADT uses an array
Number of elements
®* We add elements from left to right 4
® A variable keeps track of the index of
the top element
l pop ()
: Removed element
Cf 1sEmpty ()
2.
O
3. tet —1
St + 1]

S D N

1\) ARRAY-BASED STACK (

O
®* The array storing the stack elements push (e)
may become full Element e
® A push operation will then throw an d A
IllegalStateException = _
l ® Limitation of the array-based 2. IllegalStateException
implementation 3 tet + 1
T ® Not intrinsic to the Stack ADT 4 S[t] -
- .

1\\5 JAVA IMPLEMENTATION

/|
(D ArrayStack<E> Stack<E> { push (E e)
E[] stack; IllegalStateException {
t = E (size () == stack.length)
IllegalStateException (
ArrayStack () { (10);}) ;
stack[++t] = e;
ArrayStack (capacity) { }
stack = (E[]) Object[capacity];
} E pop() |
(isEmpty ()) ;
size () { t + 1;} E e = stack[t];
;) stack[t--] = 5
B isEmpty () { t == ;) e;
}
E top() f{ }
(1sEmpty ()) ;

stack[t];

ARRAY-BASED IMPLEMENTATION

1§ PERFORMANCE AND LIMITATIONS

/
O
® Performance
® Let n be the number of elements in the stack
® The space used is O(n)
l ® Each operation runs in time O (1)
® Limitations
Cf ®* The maximum size of the stack must be defined a priori, and cannot be changed
O

®* Trying to push a new element into a full stack causes an implementation-specific
exception

1§ GROWABLE ARRAY-BASED STACK

O

® In a push operation, when the push (e)
array is full, instead of throwing Flement e
an exception, we can replace the t = S.length — 1
array with a larger one ' ,
A «new array of size ?
l ®* How large should the new array i« 0 t
be?

2
3
: increase the 4 Ali] < Si]
size by a constant ¢ SO. S« A
6.
/.

T /) : double the size
O

N =l ||]]
L
C
COMPARISON OF THE STRATEGIES | Lo
I\ {
O
®* We compare the incremental strategy and the doubling strategy by analyzing
the total time T (n) needed to perform a series of n push operations
®* We assume that we start with an empty stack represented
l ®* We then use to determine cost of a single operation. For
this kind of operation, the amortized time will be the average time taken by a
T O push over the series of operations, i.e., T(n)/n

AMORTIZATION MEANS PAYING OFF AN AMOUNT OVER TIME, NOT AVERAGE. THIS ANALYSIS RECOGNIZES EACH
OPERATION IS INHERENTLY UNEQUAL. IT IS A STANDARD COMPUTER SCIENCE METHOD TO DEAL WITH THIS.

INCREMENTAL STRATEGY ANALYSIS

® Let ¢ be the constant increase and n be the number of push operations
®* We replace the array k = n/c times

® The total time T (n) of a series of n push operations is proportional to
n+c+ 2c + 3c + 4c + ... + kc < A

=n+c(1+2+3+ ..+ k)
k(k + 1) EREE -+ &

=n + ¢ 22 =Zk:i

— 0(n + k?) = 0(n+’2—2) = 0(n?)

0(n?)

* T(n) is 0(n?) so the average time of a push is = 0(n)

DOUBLING STRATEGY ANALYSIS

We will use an amortized technique here based on accounting.
Performing a push operation will "cost" cyber-dollars
(imaginary cost of the operation). Then we sum the total
amount of cyber dollars to determine run-time

® Lets assume push costs 1 cg'ber dollar. Also assume growing an
array from size k to size 2k requires k cyber-dollars (for
copies)

® So we can "charge" (overcharge) each push to be 3 cyber-dollars

® One for their push into the array
® One for their copy on resizing

k
® One for one of the first = elements copy on resizing

® Put another way, a resize occurs when ’rh,erle are 2! elements. Doubling the size of the array costs 2
cyber-dollars, which are found in cells 2! through 2t — 1

® Thus all of the computation is paid for the the amortization is valid

®* We pay 3n for n push operations which takes O(n) time and one push is % = 0(1) amortized time

K EXERCISE
1 STACK WITH A SINGLY-LINKED LIST

O

® Describe how to implement a stack using a singly-linked list
* Stack operations: push (e), pop (), size (), isEmpty ()
® For each operation, give the running time

®* What are the downsides of such an implementation?

!
[p

EXERCISE
STACK WITH A SINGLY-LINKED LIST

®* We can implement a stack with a singly linked list
®* The top element is stored at the first node of the list

® The space used is O(n) and each operation of the Stack ADT takes O(1) time

AT T T T S e e T T T T T T TN

i S \ i
| f O 2L SE
i P - ‘M/ z |
\ - elements

S e

1\) STACK SUMMARY f

push (o) 0(1) O (n) Worst Case 0(1)
O(1) Best Case
0(1) Average Case
|
size (), 0(1) 0(1) 0(1)
? empty ()

¥

Q
U
E
U
ES (C
H
6
2
)

1§ APPLICATIONS OF QUEUES

/
O
® Direct applications
®* Waiting lines
® Access to shared resources (e.g., printer)
l ®* Multiprogramming
® Indirect applications
® Auxiliary data structure for algorithms
/}) ®* Component of other data structures
\ .

THE QUEUE ADT

®* The ADT stores arbitrary objects

Insertions and deletions follow the
scheme

Insertions are at the rear of the queue and
removals are at the front of the queue

®* Main queue operations:

: inserts element e at the end
of the queue

® Element : removes and
returns the element at the front of the
queue

(8

S

® Auxiliary queue operations:

®* Flement

: returns the

element at the front without removing it

® Integer

: returns the

number of elements stored

® Roolean

: indicates

whether no elements are stored

® Boundary cases
® Attempting the execution of

or

on an empty queue returns

O

1\\5 EXAMPLE QUEUE INTERFACE IN JAVA

public interface Queue<E> {

int size();

boolean isEmpty () ;
l E first();

void enqueue (E e);

E dequeue () ;

/**
/**
/**
/**
/**

Return number of elements */
True 1s size is 0 */

Return visible queue element */
Add to the queue */

Remove from the queue */

1\\5 EXERCISE: QUEUES

O

® lllustrate the following operations starting with an empty queue
® enqueue (8)
)

® enqueue

)

® dequeue
ZL ® enqueue
® enqueue

(
(
(2)

(

® dequeue ()

j) ® dequeue ()
e <
(

)

)
)

® enqueue

® enqueue

ARRAY-BASED QUEUE

®* Use an array of size N in a circular fashion, i.e., a

®* Two variables keep track of the front and rear
* f index of the front element

® sz number of stored elements

®* When the queue has fewer than N elements,
array location v < (f + sz) mod N
is the first empty slot past

the rear of the queue CLITIEEEI PRy [1]
01 2 f r

normal configuration

wrapped-around configuration

CEELTTI T TTIT TR
012 r f

O

1\.\5 QUEUE OPERATIONS

®* We use the modulo operator

(remainder of division)

!
T

size ()

: Number of elements
SZ
1sEmpty ()

: True 1if no elements in
queue, false otherwise

sz=20

CIIT TP PP PP PP PPT I 1]

0

1

2

f r

CELT T [T T T T 1T PP

0

1

2

r f

1 QUEUE OPERATIONS

* Operation enqueue throws an exception if the enqueue (e)
array is full

® This exception is implementation-dependent Element e

size() = N —
2. IllegalStateException
l 3. 7« (f+sz)modN
4. Qlr] <
?O 5, szesz+1
CHITT PP PP PP |1
012 f r

CREEL I T T TTITIT R
012 r f

1\) QUEUE OPERATIONS

o Opera’rlon dequeue returns null if the dequeue ()

veue is empt
q PTY : Removed element

1sEmpty ()
2.

l 3.Element e« Q[f]
4, f < f+1modN

5, szesz—1

0 e

CLITIEEEFEE T [1]
012 f r

CREEL I T T TTITIT R
012 r f

1\\5 JAVA IMPLEMENTATION

ArrayQueue<E> Queue<E> {
E[] queue;
f =0, sz = 0;
ArrayQueue () { (10);}
ArrayQueue (capacity) {
queue = (E[]) Object[capacity];
size () { sz;}
isEmpty () { g7 == g}

E first() {
(1sEmpty ())
queue [f];

enqueue (E e)

IllegalStateException {

(size () == data.length)
IllegalStateException (

stack[(f+sz) 3queue.length]

I

++sz;
E dequeue () {
(isEmpty ())
E e = queue[f];
queue[f] = ;
f = (£+1)3queue.length;
- SR

e/

ey

ARRAY-BASED IMPLEMENTATION

1% PERFORMANCE AND LIMITATIONS

O
® Performance
® Let n be the number of elements in the queue
®* The space used is O(n)
l ® Each operation runs in time O (1)

Cf ® Limitations
O

®* The maximum size of the queue must be defined a priori, and cannot be

changed

GROWABLE ARRAY-BASED QUEUE

®*In enqueue (e), when the array is full, instead of throwing an

exception, we can replace the array with a larger one
® Similar to what we did for an array-based stack

® enqueue (e) has amortized running time

* 0(n) with the incremental strategy

* 0(1) with the doubling strategy

EXERCISE
QUEUE WITH A SINGLY-LINKED LIST

® Describe how to implement a queue using a singly-linked list
P q g gty
®* Queue operations: enqueue (e), dequeue (), size (), empty ()

® For each operation, give the running time

EXERCISE
QUEUE WITH A SINGLY-LINKED LIST

® The first element is stored at the head of the list, The rear element is stored at the tail of the list
* The space used is O(n) and each operation of the Queue ADT takes O(1) time

®* NOTE: we do not have the limitation of the array based implementation on the size of the stack

b /c the size of the linked list is not fixed, i.e., the queue is NEVER full. r
(" nodes h
fIrSTE i 111 ° T11]° 111 ° 11 ——— rear

S e

1\) QUEUE SUMMARY

O (n) Worst Case

0(1) Best Case
O 0(1) Average Case

/

¢
THE DOUBLE-ENDED QUEUE ADT (CH. 6.3) Sﬁﬁ@

®* The , ADT stores
arbitrary objects. (Pronounced ‘deck’)

® Richer than stack or queue ADTs. Supports
insertions and deletions at both the front and the
end.

®* Main deque operations:

: inserts element e at the
beginning of the deque

: inserts element e at the end of
the deque

® Element : removes and
returns the element at the front of the queue

®* FElement : removes and
returns the element at the end of the queue

® Auxiliary queue operations:

® Element : returns the element
at the front without removing it

® Flement : returns the element at
the front without removing it

® Integer : returns the number of
elements stored

®* Boolean : indicates

whether no elements are stored

s

DEQUE WITH A DOUBLY LINKED LIST

® The front element is stored at the first node
® The rear element is stored at the last node

®* The space used is 0(n) and each operation of the Deque ADT takes O(1) time

first | | last
2N E A N S A N S A N
{ —— :‘_‘_‘_‘:_‘_:::&;:::::::::‘_‘_‘_&;‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_‘_&\“_‘_‘_:’:I
Wi -9 SRl
i A - M 7~ > i

e e — — — — — — —

PERFORMANCE AND LIMITATIONS
DOUBLY LINKED LIST IMPLEMENTATION

® Performance
® Let n be the number of elements in the deque
®* The space used is O(n)

® Each operation runs in time O (1)

1§ DEQUE SUMMARY

/
O Array Array Expandable List List
Fixed-Size (doubling strategy) Singly-Linked Doubly-Linked
removeFirst () 0(1) 0(1) O(n) for one at list tail, 0(1)
removelast () 0(1) for other
l addFirst (o) 0(1) O(n) Worst Case

addLast (o) 0(1) Best Case
)

0(1) Average Case
f first(0(1)
O last ()

size () 0(1)
1sEmpty ()

INTERVIEW QUESTION 1

®* How would you design a stack which, in addition to push and pop, also has a
function min which returns the minimum element? push, pop and min should

all operate in O(1) time

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

1\.\5 INTERVIEW QUESTION 2

/
O
® An animal shelter holds only dogs and cats, and operates in a strictly "first in,
first out” basis. People must adopt either the "oldest" (based on arrival time)
of all animals at the shelter, or they can select whether they prefer a dog or
l cat (and will receive the oldest animal of that type). They cannot select which
specific animal they would like. Create the data structure(s) to maintain this
Cf o system and implement operations such as enqueue, dequeueAny, dequeueDog,

and dequeueCat.

GAYLE LAAKMANN MCDOWELL, "CRACKING THE CODE INTERVIEW: 150 PROGRAMMING QUESTIONS AND
SOLUTIONS", 5TH EDITION, CAREERCUP PUBLISHING, 2011.

