CH 4
ALGORITHM ANALYSIS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

ANALYSIS OF ALGORITHMS (CH 4.2-4.3)

RUNNING TIME

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- We focus on the worst case running time.
- Easier to analyze
- Crucial to applications such as games, finance, and robotics

LIMITATIONS OF EXPERIMENTS

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

THEORETICAL ANALYSIS

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

BIG-OH NOTATION

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_{0} such that $f(n) \leq c g(n)$ for $n \geq n_{0}$
- $f(n)$ - might represent real computation time (measured time, if you will)
- $g(n)$ - approximation function
- Example: $2 \mathrm{n}+10$ is $\mathrm{O}(\mathrm{n})$
- $2 n+10 \leq c n$
- $\frac{10}{c-2} \leq n$
- Pick $c=3$ and $n_{0}=10$
- To reduce: Strip constants, and take highest order terms
- Constants do no matter because of limits as n goes to infinity

PRACTICE WITH BIG-OH

- Determine the big-oh approximation for the following functions:

1. 2^{100}
2. $4 n^{2}+3 n-10$
3. $n \log n+100 n$
4. $3 * 2^{n}+400 n^{2}$
5. $2^{\log n}$
6. $46 n^{2}+m$
7. $n \sqrt{n}+23 m \log n$
8. $\cos x$

BIG-OH NOTATION FOR ALGORITHMS

- In comparison of algorithms, $f(n)$ is the real (measurable) time an algorithm takes to compute on hardware (tied to an implementation)
- Again, hard to compare to other algorithms
- To determine big-oh approximation we count the maximum number of steps required by our algorithm
- Unary and binary math operations, (e.g., $+,-, *, /$) and single memory accesses are O (1)
- Loops or math operations like summation/product are $O(k)$ where k is the number of iterations performed
- Essentially, we don't care about constants or exact times, we are reasoning about a general trend of n vs $f(n)$

EXAMPLE

ADDING TO AN ARRAY

- To add an entry e into array A at index i, we need to make room for it by shifting forward the $n-i$ entries $A[i], \ldots, A[n-1]$

A

A

Algorithm Add
Input: Array A, index i, element e
1 . for $k \leftarrow n$ to $i+1$ do
2. $A[k] \leftarrow A[k-1]$
3. $A[i] \leftarrow e$
4. $n \leftarrow n+1$

EXAMPLE
 ADDING TO AN ARRAY

- Best case
- Add at the end of the array
- One comparison, one copy, one increment
- $3=O(1)$, by removal of constants
- Worst case
- Add at the beginning of the array
- n comparisons, n copies, $2 n$ increments
- $4 n=O(n)$, by removal of constants
- Average case?

EXERCISES

- Removing from an array
- Best, average, worst cases
- Inserting at head or tail of linked list
- Removing head of tail of doubly-linked list
- Removing head of singly-linked list
- Removing tail of singly-linked list

SEVEN IMPORTANT FUNCTIONS

- Seven functions that often appear in algorithm analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- Linearithmic $\approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx 2^{n}$

- In a log-log chart, the slope of the line corresponds to the growth rate

BIG-OH ANALYSIS APPLIES TO TIME AND MEMORY

- How about recursion?
- Each function call uses memory!
- Practice: How much memory does a recursive binary search use?

BIG-OMEGA AND BIG-THETA

- Big-oh describes an upper bound. Similar constructs exist for lower bounds (Bigomega $\Omega(g(n))$), "tight" bounds (Big-theta $\Theta(g(n))$), strict upper bounds (little-oh $o(g(n))$), and strict lower bounds (little-omega $\omega(g(n))$)
- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\Omega(g(n))$ if there are positive constants c and n_{0} such that $f(n) \geq c g(n)$ for $n \geq n_{0}$
- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\Theta(g(n))$ if there are positive constants $c^{\prime}, c^{\prime \prime}$, and n_{0} such that $c^{\prime} g(n) \leq f(n) \leq c^{\prime \prime} g(n)$ for $n \geq n_{0}$
- To prove: You must show upper and lower bounds hold. Because of this, in CS we often just say big-oh, but really big-theta is more accurate.

BIG-OH VS "WORST" CASE

- Despite common belief, big-oh does not always mean worst case
- Big-oh is an upper bound. So worst-case, average-case, and best case can each have a unique upper bound. It depends what we are describing.
- Similarly, big-omega does not mean best case and big-theta definitely does not mean average case

COMMON PROOF TECHNIQUES FOR THIS CLASS

- Direct proof - using knowledge of axioms and definitions
- Used for determining theoretical complexity
- Loose example
- Copying takes one operation. My loop runs n times and performs n copies. Therefore the total runtime is $O(n)$
- Contradiction - assume the opposite and reach an impossibility
- We will see this later in the course, in proving properties of structures
- Loose example
- Prove: if $a b$ is odd, then a is odd and b is odd. Proof: Assume a is even, then $a=2 j$ for some integer j. Thus $a b=2(j b)$, implying $a b$ is even. This is a contradiction to our original assumption, thus a cannot be even.
- Induction - not on a test or homework, only for my lectures
- Counterproof by example

