
CH 4
ALGORITHM ANALYSIS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

ANALYSIS OF ALGORITHMS (CH 4.2-4.3)

AlgorithmInput Output

RUNNING TIME

• Most algorithms transform input objects

into output objects.

• The running time of an algorithm

typically grows with the input size.

• We focus on the worst case running

time.

• Easier to analyze

• Crucial to applications such as games,

finance, and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e

1000 2000 3000 4000

Input Size

best case

average case

worst case

LIMITATIONS OF EXPERIMENTS

• It is necessary to implement the algorithm, which may be difficult

• Results may not be indicative of the running time on other inputs not included

in the experiment.

• In order to compare two algorithms, the same hardware and software

environments must be used

THEORETICAL ANALYSIS

• Uses a high-level description of the algorithm instead of an implementation

• Characterizes running time as a function of the input size, 𝑛

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm independent of the

hardware/software environment

BIG-OH NOTATION

• Given functions 𝑓 𝑛 and 𝑔 𝑛 , we say that 𝑓 𝑛 is 𝑂 𝑔 𝑛 if there are positive

constants 𝑐 and 𝑛0 such that 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for 𝑛 ≥ 𝑛0
• 𝑓 𝑛 - might represent real computation time (measured time, if you will)

• 𝑔 𝑛 - approximation function

• Example: 2n + 10 is O(n)

• 2𝑛 + 10 ≤ 𝑐𝑛

•
10

𝑐−2
≤ 𝑛

• Pick 𝑐 = 3 and 𝑛0 = 10

• To reduce: Strip constants, and take highest order terms

• Constants do no matter because of limits as 𝑛 goes to infinity

PRACTICE WITH BIG-OH

• Determine the big-oh approximation for the following functions:

1. 2100

2. 4𝑛2 + 3𝑛 − 10

3. 𝑛 log 𝑛 + 100𝑛

4. 3 ∗ 2𝑛 + 400𝑛2

5. 2log 𝑛

6. 46𝑛2 +𝑚

7. 𝑛 𝑛 + 23𝑚 log 𝑛

8. cos 𝑥

BIG-OH NOTATION FOR ALGORITHMS

• In comparison of algorithms, 𝑓 𝑛 is the real (measurable) time an algorithm takes to compute

on hardware (tied to an implementation)

• Again, hard to compare to other algorithms

• To determine big-oh approximation we count the maximum number of steps required by our

algorithm

• Unary and binary math operations, (e.g., +, -, *, /) and single memory accesses are 𝑂 1

• Loops or math operations like summation/product are 𝑂 𝑘 where 𝑘 is the number of iterations

performed

• Essentially, we don't care about constants or exact times, we are reasoning about a general

trend of 𝑛 vs 𝑓 𝑛

EXAMPLE
ADDING TO AN ARRAY

• To add an entry 𝑒 into array 𝐴 at

index 𝑖, we need to make room for it

by shifting forward the 𝑛 − 𝑖 entries

𝐴 𝑖 , … , 𝐴 𝑛 − 1

Algorithm Add

Input: Array 𝐴,

index 𝑖, element 𝑒

1.for 𝑘 ← 𝑛 to 𝑖 + 1 do

2. 𝐴 𝑘 ← 𝐴[𝑘 − 1]

3. 𝐴 𝑖 ← 𝑒

4. 𝑛 ← 𝑛 + 1
A

0 1 2 ni

A

0 1 2 ni

0 1 2 n

e

i

A

EXAMPLE
ADDING TO AN ARRAY

• Best case

• Add at the end of the array

• One comparison, one copy, one increment

• 3 = 𝑂 1 , by removal of constants

• Worst case

• Add at the beginning of the array

• 𝑛 comparisons, 𝑛 copies, 2𝑛 increments

• 4𝑛 = 𝑂 𝑛 , by removal of constants

• Average case?

EXERCISES

• Removing from an array

• Best, average, worst cases

• Inserting at head or tail of linked list

• Removing head of tail of doubly-linked list

• Removing head of singly-linked list

• Removing tail of singly-linked list

SEVEN IMPORTANT FUNCTIONS

• Seven functions that often appear in algorithm

analysis:

• Constant 1

• Logarithmic log 𝑛

• Linear 𝑛

• Linearithmic 𝑛 log𝑛

• Quadratic 𝑛2

• Cubic 𝑛3

• Exponential 2𝑛

• In a log-log chart, the slope of the line

corresponds to the growth rate

1 2 3 4 5 6 7 8 9 10

T
im

e

Input Size

1 log n n n log n n^2 n^3 2^n

BIG-OH ANALYSIS APPLIES TO TIME AND MEMORY

• How about recursion?

• Each function call uses memory!

• Practice: How much memory does a recursive binary search use?

BIG-OMEGA AND BIG-THETA

• Big-oh describes an upper bound. Similar constructs exist for lower bounds (Big-

omega Ω 𝑔 𝑛), "tight" bounds (Big-theta Θ 𝑔 𝑛), strict upper bounds (little-oh

𝑜 𝑔 𝑛), and strict lower bounds (little-omega 𝜔 𝑔 𝑛)

• Given functions 𝑓 𝑛 and 𝑔 𝑛 , we say that 𝑓 𝑛 is Ω 𝑔 𝑛 if there are positive

constants 𝑐 and 𝑛0 such that 𝑓 𝑛 ≥ 𝑐𝑔 𝑛 for 𝑛 ≥ 𝑛0

• Given functions 𝑓 𝑛 and 𝑔 𝑛 , we say that 𝑓 𝑛 is Θ 𝑔 𝑛 if there are positive

constants 𝑐′, 𝑐′′, and 𝑛0 such that 𝑐′𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐′′𝑔 𝑛 for 𝑛 ≥ 𝑛0

• To prove: You must show upper and lower bounds hold. Because of this, in CS we often just say

big-oh, but really big-theta is more accurate.

BIG-OH VS "WORST" CASE

• Despite common belief, big-oh does not always mean worst case

• Big-oh is an upper bound. So worst-case, average-case, and best case can

each have a unique upper bound. It depends what we are describing.

• Similarly, big-omega does not mean best case and big-theta definitely does

not mean average case

COMMON PROOF TECHNIQUES FOR THIS CLASS

• Direct proof – using knowledge of axioms and definitions

• Used for determining theoretical complexity

• Loose example

• Copying takes one operation. My loop runs 𝑛 times and performs 𝑛 copies. Therefore the total runtime is 𝑂 𝑛

• Contradiction – assume the opposite and reach an impossibility

• We will see this later in the course, in proving properties of structures

• Loose example

• Prove: if 𝑎𝑏 is odd, then 𝑎 is odd and 𝑏 is odd. Proof: Assume 𝑎 is even, then 𝑎 = 2𝑗 for some integer 𝑗. Thus

𝑎𝑏 = 2(𝑗𝑏), implying 𝑎𝑏 is even. This is a contradiction to our original assumption, thus 𝑎 cannot be even.

• Induction – not on a test or homework, only for my lectures

• Counterproof by example

