
WELCOME TO
CSCE 221: DATA STRUCTURES

SYLLABUS

REVIEW

COMPUTING, DATA, AND MEMORY

COMPUTER SCIENCE

• Study of algorithms

• Study of computing tools

• It is not just:

• Programming

• Electronics

• Etc.

• In this class, we formalize this study of

algorithms through the basics of data

structures – a bread-and-butter

component of almost all algorithms

Input

Algorithm

Output

PSEUDOCODE

• High-level description of an algorithm

• More structured than English prose

• Less detailed than a program

• Preferred notation for describing

algorithms

• Hides program design issues

• Basic rundown

• Use common math notations

• Use ← vs = for assignment

• Do not use (), {}, ;, etc.

• Let indenting denote scope

• Use objects and functions without having

to define them

• Look at my website LaTex tutorial for

more info

THE BASIC METHODS TO STORE DATA FROM 150

1. One variable per data element – does not associate data together and can

be very verbose

2. Arrays – group a large amount of data all of the same type

3. Objects – group a large amount of data all of different types

MEMORY

• Memory is storage for data and programs

• We will pretend that memory is an infinitely long piece of tape separated

into different cells

• Each cell has an address, i.e., a location, and a value

• In the computer these values are represented in binary (0s and 1s) and

addresses are located in hexadecimal (base 16, 0x)

0x0 0x1 0x2 0xA

… …x y z

MEMORY
ARRAYS

• We will review arrays in Java later today

• Arrays are a sequential piece of memory all of the same type

• Pointer (e.g., Java reference) – a variable that stores a memory location

0xA

… ……

0xB

100 x0xB

0xB+99

y z

Array A A's size

…

x

y

…

z

0

1

…

99

Array A

Simpler View Realistic View

MEMORY
OBJECTS

• We will review objects in Java and learn new concepts/syntax about objects

tomorrow

• Objects are entities in your program. Another way to think about them is that

they are collections of data of unassociated types.

• Objects are stored as pointers in Java, always.

0xA

… ……

0xB

x0xB

0xB+B's "size"

y z

Object A

…

x

y

…

z

Object A

Simpler View Realistic View

BASIC COMPUTER ORGANIZATION

Central Processing Unit

(CPU)

• Processes commands as 0’s and 1’s

• Performs arithmatic

• Requests (reads) and writes to/from

memory

Input

• Files

• Keyboard

• Mouse

• Etc.

Memory

• Data encoded as 0s and 1s

• Cache

• Random Access Memory (RAM)

• Hard drive

Output

• Monitor

• Force feedback

• Files

• Etc.

Bus

TAKEAWAYS ABOUT MEMORY

• Programs can operate more efficiently when data is close together, e.g.,

arrays. This is called locality of data. The reason it works better is the cache.

• Pointers are not usually located close to the data. They hurt locality.

CH3.
FUNDAMENTAL DATA STRUCTURES
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND

GOLDWASSER (WILEY 2016)

CH 3.1 ARRAYS

ARRAY DEFINITION

• An array is a sequenced collection of variables all of the same type. Each

variable, or cell, in an array has an index, which uniquely refers to the value

stored in that cell. The cells of an array, 𝐴, are numbered 0, 1, 2, and so on.

• Each value stored in an array is often called an element of that array.

A

0 1 2 ni

ARRAY LENGTH AND CAPACITY

• Since the length of an array determines the maximum number of things that

can be stored in the array, we will sometimes refer to the length of an array

as its capacity.

• In Java, the length of an array named a can be accessed using the syntax

a.length. Thus, the cells of an array, a, are numbered 0, 1, 2, and so on,

up through a.length−1, and the cell with index 𝑘 can be accessed with

syntax a[k].

a

0 1 2 nk

DECLARING ARRAYS (FIRST WAY)

• The first way to create an array is to use an assignment to a literal form when

initially declaring the array, using a syntax as:

ElementType[] arrayName =

{𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒0, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒1, … , 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑁−1};

• The ElementType can be any Java base type or class name, and arrayName

can be any valid Java identifier. The initial values must be of the same type as the

array.

DECLARING ARRAYS (SECOND WAY)

• The second way to create an array is to use the new operator.

• However, because an array is not an instance of a class, we do not use a typical

constructor. Instead we use the syntax:

new ElementType[length]

• length is a positive integer denoting the length of the new array.

• The new operator returns a reference to the new array, and typically this

would be assigned to an array variable.

ARRAYS OF OBJECTS

• Recall an array of objects is an array of pointers to objects

ADDING AN ENTRY

• To add an entry 𝑒 into array 𝐴 at

index 𝑖, we need to make room for it

by shifting forward the 𝑛 − 𝑖 entries

𝐴 𝑖 , … , 𝐴 𝑛 − 1

Algorithm Add

Input: Array 𝐴,

index 𝑖, element 𝑒

1.for 𝑘 ← 𝑛 to 𝑖 + 1 do

2. 𝐴 𝑘 ← 𝐴[𝑘 − 1]

3. 𝐴 𝑖 ← 𝑒

4. 𝑛 ← 𝑛 + 1
A

0 1 2 ni

A

0 1 2 ni

0 1 2 n

e

i

A

REMOVING AN ENTRY

• To remove the entry 𝑒 at index 𝑖, we

need to fill the hole left by 𝑒 by

shifting backward the 𝑛 − 𝑖 − 1

elements 𝐴 𝑖 + 1 ,… , 𝐴[𝑛 − 1]

Algorithm Remove

Input: Array 𝐴,

index 𝑖, element 𝑒

1.for 𝑘 ← 𝑖 + 1 to 𝑛 − 1 do

2. 𝐴 𝑘 − 1 ← 𝐴[𝑘]

3. 𝐴 𝑛 − 1 ← 𝑛𝑢𝑙𝑙

4. 𝑛 ← 𝑛 − 10 1 2 n

e

i

A

0 1 2 ni

A

0 1 2 ni

A

EXERCISE

• With a partner, write an algorithm in pseudocode to compare the equality of

two arrays 𝐴 and 𝐵. Use '=' for equality checking in pseudocode, not '=='.

CH 3.2 SINGLY LINKED LISTS

LINKED STRUCTURES

• A linked data structure stores nodes that contain data and pointers to other

nodes in the structure

• Compare this to an array!

𝑥𝑢

𝑦

𝑧

𝑣

Example of a linked structure – graph (Ch 14)

SINGLY LINKED LIST

• A singly linked list is a concrete data structure consisting of a sequence of

nodes, starting from a head pointer

• Each node stores

• element

• link to the next node

next

element node

A B C D

head

INSERTING AT THE HEAD

Algorithm AddFirst

Input: List l, Element e

1.Node 𝑛 ←new Node(𝑒) //Allocate

new node 𝑛 to contain element 𝑒

2. 𝑛. 𝑛𝑒𝑥𝑡 ← 𝑙. ℎ𝑒𝑎𝑑 //Have new node

point to old head

3. 𝑙. ℎ𝑒𝑎𝑑 ← 𝑛 //Update head to

point to new node

Note, for simplicity, this algorithm assumes the list has

elements in it. A special case would need to be

introduced for an empty list to set up the tail pointer.

INSERTING AT THE TAIL

Algorithm AddLast

Input: List 𝑙, Element 𝑒
1. Node 𝑛 ←new Node 𝑒 //Allocate a

new node to contain element 𝑒
2. 𝑛. 𝑛𝑒𝑥𝑡 ← 𝑛𝑢𝑙𝑙 //Have new node

point to null

3. 𝑙. 𝑡𝑎𝑖𝑙. 𝑛𝑒𝑥𝑡 ← 𝑛 //Have old last

node point to new node

4. 𝑙. 𝑡𝑎𝑖𝑙 ← 𝑛 //Update tail to point

to new node

Note, for simplicity, this algorithm assumes the list has

elements in it. A special case would need to be

introduced for an empty list to set up the head pointer.

REMOVING AT THE HEAD

Algorithm RemoveFirst

Input: List 𝑙

1. 𝑙. ℎ𝑒𝑎𝑑 ← 𝑙. ℎ𝑒𝑎𝑑. 𝑛𝑒𝑥𝑡 //Update

head to point to next

node in the list

2.Allow garbage collector

to reclaim the former

first node

Note, a garbage collector is not found in all languages you

may need to deal with memory deallocation yourself. In this

class, we will stick to the Java way. However, note, the

garbage collector is complex, so to help it perform at its

best you typically set all pointers of a node to null.

Note, for simplicity, this algorithm assumes the list has

elements in it and does not return the removed element.

Extra logic would be added in a real implementation..

EXERCISE

• Write an algorithm for finding the second-to-last node in a singly-linked list.

The last node is indicated by a null next reference.

REMOVING AT THE TAIL

• Removing at the tail of a singly linked list is not efficient!

• There is no constant-time way to update the tail to point to the previous node

A JAVA SINGLY LINKED LIST OF INT
// Nest this class inside of Linked list

private static class Node {

// Private data

private int elem; // Element

private Node next; // Next node (link)

// Constructor

public Node(int e, Node n) {

elem = e;

next = n;

}

// Accessors

public int getElement() {return elem;}

public Node getNext() {return next;}

}

public class LinkedList {

/* Place node class here */

// Private data

private Node head = null; // List head

private Node tail = null; // List tail

private int size = 0; // List size

// Constructor

public LinkedList() {}

// Accessors

public size() {return size;}

// Modifiers

public addFirst(int e) {

head = new Node(e, head);

if(size == 0)

tail = head;

++size;

}

/* Other algorithms */

}

CH 3.4 DOUBLY LINKED LISTS

DOUBLY LINKED LIST

• A doubly linked list can be traversed

forward and backward

• Nodes store:

• element

• link to the previous node

• link to the next node

• Special trailer and

header nodes that

do not store data.

• In linked structures, special nodes

like this are called sentinels

trailerheader nodes/positions

elements

prev next

element node

INSERTION

• Insert a new node, 𝑞, between 𝑝 and its successor.

A B C

𝑝

A B C

𝑝

X

𝑞

A B X C

𝑝 𝑞

DELETION

• Remove a node, 𝑝, from a doubly linked list.

A B C D

𝑝

A B C

D

𝑝

A B C

EXERCISE

• Write an algorithm for finding the middle node of a doubly linked-list

• With access to a method size()

• Without access to a method size()

SUMMARY

• Two major patterns of data storage

• Consecutive memory – localized, through arrays or objects

• Linked memory – not localized, through linked objects

