
CH 4
ALGORITHM ANALYSIS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH 

DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND 

GOLDWASSER (WILEY 2016)



ANALYSIS OF ALGORITHMS (CH 4.2-4.3)

AlgorithmInput Output



RUNTIME ANALYSIS



BIG-OH

• Given functions 𝑓 𝑛 and 𝑔 𝑛 , we say that 𝑓 𝑛 is 𝑂 𝑔 𝑛 if there are 

positive constants 𝑐 and 𝑛0 such that 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for 𝑛 ≥ 𝑛0

• 𝑓 𝑛 is the real (measured) time

• We need to know how to determine 𝑓 𝑛 , 𝑐, and 𝑛0

• This is all done through experiments



DETERMINING 𝑓 𝑛

• Vary the size of the input and then determine runtime using System.nanoTime()

1.for(int n = 2; n < MAX; n*=2) {

2. int r = max(10, MAX/n); //number of repetitions

3. long start = System.nanoTime();

4. for(int k = 0; k < r; ++k)

5. executeFunction();

6. long stop = System.nanoTime();

7. double elapsed = (stop – start)/1.e9/r;

8.}



DETERMINE 𝑐 AND 𝑛0

• First plot 𝑓(𝑛) – time vs size

• Second plot 
𝑓 𝑛

𝑔 𝑛
or 

time

theoretical time
vs size

• Look for where the data levels off. This will be 𝑛0

• Look for the largest value to the right of 𝑛0, this will be 𝑐



TOGETHER – TIME LINEAR SEARCH

• We will download and modify Timing.java for this activity (see Programming 

Assignment 3)



WHY GO THROUGH THIS ANALYSIS?

• If two algorithms have the same theoretical analysis, we must compare them 

experimentally!

• The algorithm with a smaller 𝑐 value is more efficient

• Determining the 𝑛0 informs us:

• When the theoretical complexity begins holding true

• If you reach the memory limit of the machine, you will see "odd" effects…



ACTIVITY

• Determine big-oh constants for Arrays.sort();

• Theoretical complexity will be 𝑂 𝑛 log 𝑛


