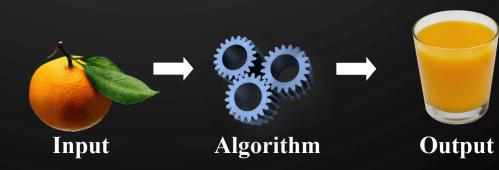
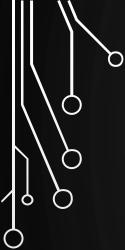

CH 4 ALGORITHM ANALYSIS

Ó

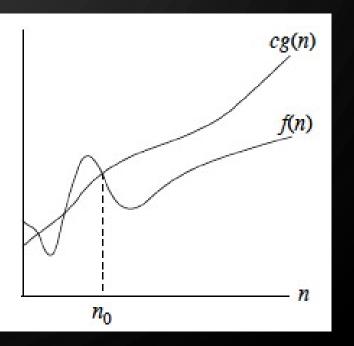

0

0


ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN JAVA, GOODRICH, TAMASSIA AND GOLDWASSER (WILEY 2016)

ANALYSIS OF ALGORITHMS (CH 4.2-4.3)

 \bigcirc


 \bigcirc

RUNTIME ANALYSIS

 \bigcirc

BIG-OH

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that $f(n) \le cg(n)$ for $n \ge n_0$
 - f(n) is the real (measured) time
- We need to know how to determine f(n), c, and n_0
 - This is all done through experiments

Q

DETERMINING f(n)

Q

8.

• Vary the size of the input and then determine runtime using System.nanoTime()

- 2. int r = max(10, MAX/n); //number of repetitions
- 3. long start = System.nanoTime();
- 4. for (int k = 0; k < r; ++k)
- 5. executeFunction();
- 6. long stop = System.nanoTime();
- 7. double elapsed = (stop start)/1.e9/r;

9

 \bigcirc

Ċ

- First plot f(n) time vs size
- Second plot $\frac{f(n)}{g(n)}$ or $\frac{\text{time}}{\text{theoretical time}}$ vs size
- ullet Look for where the data levels off. This will be n_0
- Look for the largest value to the right of n_0 , this will be c

TOGETHER - TIME LINEAR SEARCH

 \mathcal{O}

 \bigcirc

O

9

 \bigcirc

• We will download and modify Timing.java for this activity (see Programming Assignment 3)

WHY GO THROUGH THIS ANALYSIS?

- If two algorithms have the same theoretical analysis, we must compare them experimentally!
 - The algorithm with a smaller c value is more efficient
- Determining the n_0 informs us:

Q

- When the theoretical complexity begins holding true
- If you reach the memory limit of the machine, you will see "odd" effects...

ACTIVITY

O

 \bigcirc

 \bigcirc

0

9

 \bigcirc

 \bigcirc

- Determine big-oh constants for Arrays.sort();
- Theoretical complexity will be $O(n \log n)$