
PERFORMANCE
EFFICIENCY

SEARCHING

SORTING



WHAT IS PERFORMANCE?

• Since the early days in computing, 

computer scientists have concerned 

themselves with improving hardware, 

software, visualizations, etc

• Performance can mean many 

different things

• "The economy of human time is the 

next advantage of machinery in 

manufactures." – Charles Babbage



EXAMPLES OF PERFORMANCE

• Fewest computations

• Smaller memory usage

• Faster computations

• Improving accuracy of computations

• How we achieve these

• Better algorithms

• Better hardware

• Better languages



WHY DO WE CARE?

• We want to solve real problems (large) in real time



BIG-OH COMPLEXITY

• We will focus our study of performance on time as a metric of performance

• We can measure time experimentally like a stopwatch in our programs:

long start = System.nanoTime();

//run algorithm

long stop = System.nanoTime();

double time = (stop – start)/1e9;

• We can measure time theoretically with big-oh analysis – an approximation 

technique for quantifying the time an algorithm takes



BIG-OH COMPLEXITY

• A function 𝑓 𝑛 is 𝑂 𝑔 𝑛 (pronounced "big-oh") if there exists constants 𝑐, 

and 𝑛0 such that 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑛0

• 𝑓 𝑛 – real time taken for an algorithm. This is what we want to approximate

• 𝑔 𝑛 – a function that "approximates" 𝑓 𝑛 , more precisely it is an upper bound to 𝑓 𝑛

• We use this, as it describes how long an algorithm will

take to compute as the problem size (𝑛) increases

• To determine – count the operations



COMMON BIG-OH FUNCTIONS

• Logarithmic – 𝑂 log 𝑛

• Linear – 𝑂 𝑛

• Example: searching for the minimum in 

an array. We must "look at" all 𝑛

elements of an array

• Linearithmic – 𝑂 𝑛 log 𝑛

• Quadratic – 𝑂 𝑛2



SHAMELESS PLUG FOR CMSC 221

• This class is not about how we come 

up with these equations, or how we 

design better algorithms. For 

continued information, continue on in 

CS coursework

• In this class, I want you to have an 

intuitive feel of what big-oh means 

through a few algorithms

• In this class, understand the 

algorithms I present, but I do not 

expect you to come up with it 

yourself



LETS EXPLORE THESE CONCEPTS

• Case study on Searching

• Linear Search

• Binary Search

• Case study on Sorting

• Bubble Sort

• Selection Sort

• Merge Sort



WAIT…HOW DO WE DO EXPERIMENTS?

• We vary the size of the data (usually 

by powers of two), so test on 

𝑛 = 21, 22, … , 2𝑑

• Repeat each experiment numerous times 

to:

• Get an accurate time for operations 

faster than 1 microsecond (usually one 

tick of the clock)

• Average timing considering other tasks 

running on the computer

• Pseudocode

1.for 𝑁 ← 21…2𝑑 do

2. Setup before timing

3. 𝑠𝑡𝑎𝑟𝑡 ← time()

4. for 𝑘 ← 0…𝑟𝑒𝑝𝑒𝑎𝑡𝑠 do

5. experiment()

6. 𝑠𝑡𝑜𝑝 ← time()

7. output(
𝑠𝑡𝑎𝑟𝑡−𝑠𝑡𝑜𝑝

𝑟𝑒𝑝𝑒𝑎𝑡𝑠
)



CASE STUDY OF SEARCHING



LINEAR SEARCH

• Pseudocode

Input: Array 𝑎𝑟𝑟, Key 𝑘

Output: true if 𝑎𝑟𝑟 contains 

𝑘, false otherwise

1.for each 𝑎 ∈ 𝑎𝑟𝑟 do

2. if 𝑎 = 𝑘 then

3. return true

4.return false

• Complexity?

• Linear – 𝑂 𝑛

• Reasoning – The search might have to 

visit each of the 𝑛 elements contained in 

the array.

• Note – it doesn't matter if the first 

element is equal to the key, that is a 

special case. On average we must search 
𝑛

2
elements. Additionally, we don't care 

about a specific size, we are interested in 

performance as the size tends to infinity



CAN WE DO BETTER?

• Computer scientists always ask this kind of question, can we do better?

• Well in general…no, this is about the best we can do with searching.

• Computer scientists then ask a follow-up questions, can we do better in special 

cases?

• Yes! If we knew the input was sorted we could do much better.



BINARY SEARCH

• Pseudocode

Input: Sorted array arr, Key k

Output: true if arr contains k, false otherwise

1. 𝑙𝑜𝑤 ← 0
2. ℎ𝑖𝑔ℎ ← 𝑎𝑟𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ − 1
3. while 𝑙𝑜 ≤ ℎ𝑖 do

4. 𝑚𝑖𝑑 ←
ℎ𝑖𝑔ℎ+𝑙𝑜𝑤

2
5. if 𝑘 < 𝑎𝑟𝑟[𝑚𝑖𝑑] then

6. ℎ𝑖𝑔ℎ ← 𝑚𝑖𝑑 − 1
7. else if 𝑘 > 𝑎𝑟𝑟[𝑚𝑖𝑑] then

8. 𝑙𝑜𝑤 ← 𝑚𝑖𝑑 + 1
9. else

10. return true

11.return false



BINARY SEARCH

• How it works?

• Key is 7

1 3 4 5 7 8 9 11 14 16 18 190

ml h

1 3 4 5 7 8 9 11 14 16 18 190

ml h

1 3 4 5 7 8 9 11 14 16 18 190

ml h

1 3 4 5 7 8 9 11 14 16 18 190

l=m =h



BINARY SEARCH

• Complexity?

• Logarithmic – 𝑂 log𝑛

• Reasoning – in each iteration of the loop, we eliminate half of the indices as possible cells 

to hold the key. The number of times you can repeatedly divide a number by 2 is the 

definition of a logarithm

• Note – I am loose on the base of the logarithm. If you feel more comfortable with one, it 

will always be base 2. However, in big-oh complexity the base doesn't matter. See me 

after class if you would like a proof.



EXPERIMENT SEARCHING

• Download Search.java from the course website. It 

contains an experiment ready to go comparing 

the different searches. Lets go through the file to 

ensure we understand each component.

• Run the file, open up the csv file in Microsoft Excel

• Make a line scatter plot of the size vs the time of 

the methods

• Convert to a log-log plot to get a better picture of 

the data

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 10 100 1000 10000 100000 1000000 10000000

Linear Search vs Binary Search
log-log plot

Linear Search Binary Search

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

6.00E-04

0 200000 400000 600000 800000 1000000 1200000

Linear Search vs Binary Search

Linear Search Binary Search



CONCLUSION

• A smaller complexity drastically affects runtime

• 𝑂 log 𝑛 is much faster than 𝑂 𝑛



CASE STUDY OF SORTING



BUBBLE SORT

• Pseudocode

Input: Array 𝑎𝑟𝑟

Output: Sorted array

1. for 𝑖 ← 1…𝑎𝑟𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ do

2. for 𝑗 ← 0…𝑎𝑟𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑖 do

3. if 𝑎𝑟𝑟 𝑗 > 𝑎𝑟𝑟 𝑗 + 1 then

4. swap(𝑎𝑟𝑟, 𝑗, 𝑗 + 1)

• Complexity

• Quadratic – 𝑂 𝑛2

• Reasoning – There are 𝑛 passes over the 

array, in each pass 𝑛 elements are visited and 

possibly swapped. 𝑛 ∗ 𝑛 = 𝑛2



CAN WE DO BETTER?

• Computer scientists always ask this kind of question, can we do better?

• Identify the weakness here, bubble sort swaps too much

• Can we fix it?



SELECTION SORT

• Pseudocode

Input: Array 𝑎𝑟𝑟
Output: Sorted array

1. for 𝑖 ← 0…𝑎𝑟𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ − 2 do

2. 𝑚𝑖𝑛 ← 𝑖;
3. for 𝑗 ← 𝑖 …𝑎𝑟𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ − 1 do

4. if 𝑎𝑟𝑟 𝑗 < 𝑎𝑟𝑟[𝑚𝑖𝑛] then

5. 𝑚𝑖𝑛 ← 𝑗
6. swap(𝑎𝑟𝑟, 𝑖, 𝑚𝑖𝑛)

• Complexity?

• Quadratic – 𝑂 𝑛2

• Reasoning – In each iteration of the outer 

loop, we must find the minimum in the rest of 

the array, and we swap this minimum into 

place. Doing this 𝑛 times, takes in total 𝑂 𝑛2

operations. 



CAN WE DO BETTER?

• This was not satisfying, bubble sort and selection sort have the same 

complexity, even though selection sort is a much nicer idea (and performs 

better in practice, will see soon)

• Computer scientists always ask this kind of question, can we do better?

• Maybe we can try a radically different idea



MERGE SORT

• Split the array in half

• Sort each half recursively

• Merge the two back together



MERGE SORT

• Pseudocode Sort

Input: Array 𝑎𝑟𝑟
Output: Sorted array

1. if 𝑎𝑟𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ < 2 then return

2. 𝑙, 𝑟 ← split(𝑎𝑟𝑟)
3. MergeSort(𝑙)
4. MergeSort(𝑟)
5. 𝑎𝑟𝑟 ← merge(𝑙, 𝑟)

• Pseudocode Merge

Input: Sorted arrays 𝑙 and 𝑟
Output: Sorted array 𝑎𝑟𝑟
1. 𝑎𝑟𝑟 ← newArray(𝑙. 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ)
2. 𝑖 ← 0; 𝑗 ← 0; 𝑘 ← 0
3. while 𝑖 < 𝑙. 𝑙𝑒𝑛𝑔𝑡ℎ ∧ 𝑗 < 𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ do

4. if 𝑙[𝑖] < 𝑟[𝑗] then

5. 𝑎𝑟𝑟 𝑘 ← 𝑙 𝑖 ; 𝑘 ← 𝑘 + 1; 𝑖 ← 𝑖 + 1
6. else

7. 𝑎𝑟𝑟 𝑘 ← 𝑙 𝑗 ; 𝑘 ← 𝑘 + 1; 𝑗 ← 𝑗 + 1
8. while 𝑖 < 𝑙. 𝑙𝑒𝑛𝑔𝑡ℎ do

9. 𝑎𝑟𝑟 𝑘 ← 𝑙 𝑖 ; 𝑘 ← 𝑘 + 1; 𝑖 ← 𝑖 + 1
10. while 𝑗 < 𝑟. 𝑙𝑒𝑛𝑔𝑡ℎ do

11. 𝑎𝑟𝑟 𝑘 ← 𝑙 𝑗 ; 𝑘 ← 𝑘 + 1; 𝑗 ← 𝑗 + 1
12. return 𝑎𝑟𝑟



MERGE SORT

• Complexity?

• Linearithmic – 𝑂 𝑛 log𝑛

• Reasoning – At each iteration of the 

recursive function we split the array in 

half and merge it back together. This is 

𝑛 work. Then we do this same amount of 

work at each level of the recursion tree. 

Since we split in half repeatedly, there 

are a logarithmic number of levels. Thus 

– 𝑛 work on log 𝑛 levels is 𝑂 𝑛 log 𝑛

depth #seqs size Cost for level

0 1 𝑛 𝑛

1 2 n/2 𝑛

… … …

i
2
𝑖

𝑛

2𝑖
𝑛

… … …

log𝑛 2log 𝑛 = 𝑛
𝑛

2log 𝑛
= 1 𝑛



EXPERIMENT SORTING

• Download Sort.java from the course website. It 

contains an experiment ready to go comparing 

the different searches. Lets go through the file 

to ensure we understand each component.

• Run the file, open up the csv file in Microsoft 

Excel

• Make a line scatter plot of the size vs the time 

of the methods

• Convert to a log-log plot to get a better picture 

of the data

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 10 100 1000 10000 100000

Sorting Comparison
log-log plot

Bubble Sort Selection Sort Merge Sort

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

4.00E-01

0 5000 10000 15000 20000 25000 30000 35000

Sorting Comparison

Bubble Sort Selection Sort Merge Sort



CONCLUSION

• Two algorithms can have the same complexity, but different actual 

performance

• We need to experiment on our data

• Smaller complexity will always beat an optimized higher complexity

• However, note that this doesn't necessarily apply to small values of 𝑛

• Lesson – choosing an appropriate algorithm requires understanding the size of your data 



ALGORITHM SUMMARY

• Searching

• Linear Search – linear time or 𝑂 𝑛

• Binary Search – logarithmic time or 𝑂 log𝑛

• Sorting

• Bubble Sort – quadratic time or 𝑂 𝑛2

• Selection Sort – quadratic time or 𝑂 𝑛2

• Merge Sort – linearithmic time or 𝑂 𝑛 log 𝑛


