
ADVANCED TECHNIQUES
• INTEGRATED DEVELOPMENT ENVIRONMENTS

• JAVA GENERICS

• ARRAYLIST, MAP

• LAMBDAS



INTEGRATED DEVELOPMENT ENVIRONMENTS

• IDEs combine the compiler with the 

text editor

• Many also provide a symbolic 

debugger to facilitate finding errors

• Lets try HelloWorld together in one, 

Eclipse



GENERIC PROGRAMMING

• Generic programming – programming in terms of operations of types only. 

Any type that satisfies the operational constraints may be used.

• In Java – Multiple methods to do this. Polymorphism (at runtime) and Generics 

(at compile time)

• A note on Java…no primitive types can be used in generic programming. This is not true 

of something like C++



PIECE OF CAKE…JUST TREAT EVERYTHING AS AN 
OBJECT!

1.public class GenericArray {

2. Object[] objs;

3. …

4. /* Other stuff.

5. But it is limited because Object doesn’t offer much.

6. Still…we can store anything!

7. */

8. …

9.}



JAVA GENERICS

• Can be better using “Generics”:

1. public class GenericArray<T> { //T is an non primitive type

2. T[] objs;

3. /* Make assumptions on the operations of T, e.g., 

4. all T have function draw(). Now any type that 

5. satisfies this requirement may be used, regardless of 

6. inheritance tree.

7. */

8. }

• Use like:

GenericArray<String> = new GenericArray<String>();

Types are explicitly written by the programmer



JAVA GENERICS

• Can also be used in functions:

1. public static <T, S> int compare(T t, S s) {

2. //make assumptions on the types. 

3. //Any type that satisfies operation constraints may be used!

4. return t.compareTo(s);

5. }

• Used like:

1. MyObject1 a; 

2. MyObject2 b; //MyObject1 has function “compareTo(MyObject2)”

3. int c = compareTo(a, b);

Types are implicitly determined by compiler



DATA STRUCTURES

• Data types specifically designed to 

have “flexible” storage and to do so 

efficiently

• Here I define some common ones. 

CMSC 221 delves into how these 

would be implemented.



ARRAYLIST

• A “growable” array

• Generic class

• Found in java.util.ArrayList

(use import)

• Common functions: add, remove, size, 

contains

• Can also use related classes Vector, 

LinkedList

1.import java.util.ArrayList;

2.…/*in the code somewhere*/…
3.ArrayList<String> list = 

new ArrayList<String>();

4.list.add(“Hello”);
5.list.add(“There”);
6.list.remove(“Hello”);



MAPS

• Associative containers relate pairs of 

data, referred to as key, value pairs

• Example: student id to student record

• Provides very fast lookup!

• Can use HashMap or TreeMap

(remember to import)

• Common functions: put, get, remove, 

size, containsKey, containsValue, etc.

1.import java.util.HashMap;
2.…/*Somewhere in the code*/…
3.HashMap<Integer, String> h = 

new HashMap<Integer, String>();

4.h.put(4, “JLDiablo”);
5.h.put(2, “HelloWorld!”);
6.String x = h.get(2);



JAVA WILDCARDS

• A very related note, wildcards… “?” represents an unknown type. You can put 

extends or super constraints on ?, “? extends X” or “? super Y”, then:

1.public static void printArrayList(ArrayList<?> l) {

2. for(Object e : l)

3. System.out.print(e + “ ”);

4.}



LAMBDA FUNCTIONS

• Nameless functions, written directly where they are used

• Example:
1. ArrayList<Integer> numbers = new ArrayList<Integer>();

2. for(int i = 0; i < 1000; ++i)

3. numbers.add((int)(Math.random()*10000));

4. Collections.sort(numbers, (Integer i1, Integer i2) -> i1.compareTo(i2));

Parameters Body



MUCH, MUCH, MORE

• Threading/parallel computation

• Networking

• Databases

• Other libraries (e.g., advanced 

graphics)

• Etc., etc.


