
CHAPTER 3
SELECTIONS
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO JAVA PROGRAMMING, LIANG (PEARSON 2014)

MOTIVATION

• If you assigned a negative value for radius in 𝜋𝑟2, the program would print an

invalid result. If the radius is negative, you don't want the program to compute the

area. How can you deal with this situation?

• Say you run a casino, how would you determine if a slot machine yielded a win or a

loss?

• You work for the government, how might you decide if a person is eligible for a tax

refund or not?

• Moreover, how would you make a program do something over-and-over, like

maintain a set of accounts for a bank?

CONTROL FLOW

• Control flow.

• Sequence of statements that are actually executed in a program.

• Conditionals and loops: enable us to choreograph control flow.

statement 2

statement 1

statement 4

statement 3

boolean 2

true

false

statement 2

boolean 1

statement 3

false

statement 1

true

straight-line control flow control flow with conditionals and loops

Notation

• Block – statement of code

• Diamond – conditional

• Open circle – start/end of algorithm

BOOLEANS

THE BOOLEAN TYPE AND OPERATORS

• Often in a program you need to compare two values, such as whether 𝑖 is

greater than 𝑗. Java provides six comparison operators (also known as

relational operators) that can be used to compare two values. The result of

the comparison is a Boolean value: true or false.

• boolean b = (1 > 2);

RELATIONAL OPERATORS

 Java Mathematics Name Example Result

Operator Symbol (radius is 5)

< < less than radius < 0 false

<= ≤ less than or equal to radius <= 0 false

> > greater than radius > 0 true

>= ≥ greater than or equal to radius >= 0 true

== = equal to radius == 0 false

!= ≠ not equal to radius != 0 true

This is what you write in pseudocode!

LOGICAL OPERATORS

Java Operator Math Symbol Name Description

! ¬ not logical negation

&& ∧ and logical conjunction

|| ∨ or logical disjunction

^ ⊕ or ∨ exclusive or logical exclusion

This is what you write in pseudocode!

TRUTH TABLE FOR OPERATOR ¬

𝒑 ¬𝒑 Example (assume age = 24, weight = 140)

true false ¬ 𝑎𝑔𝑒 > 18 is false, because 𝑎𝑔𝑒 > 18 is true.

false true ¬ 𝑤𝑒𝑖𝑔ℎ𝑡 = 150 is true, because 𝑤𝑒𝑖𝑔ℎ𝑡 = 150 is false.

TRUTH TABLE FOR OPERATOR ∧

𝒑𝟏 𝒑𝟐 𝒑𝟏 ∧ 𝒑𝟐 Example (assume age = 24, weight = 140)

false false false 𝑎𝑔𝑒 ≤ 18 ∧ 𝑤𝑒𝑖𝑔ℎ𝑡 < 140 is false

false true false 𝑎𝑔𝑒 ≤ 18 ∧ 𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 140 is false

true false false 𝑎𝑔𝑒 > 18 ∧ 𝑤𝑒𝑖𝑔ℎ𝑡 < 140 is false

true true true 𝑎𝑔𝑒 > 18 ∧ 𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 140 is true

TRUTH TABLE FOR OPERATOR ∨

𝒑𝟏 𝒑𝟐 𝒑𝟏 ∨ 𝒑𝟐 Example (assume age = 24, weight = 140)

false false false 𝑎𝑔𝑒 ≤ 18 ∨ 𝑤𝑒𝑖𝑔ℎ𝑡 < 140 is false

false true true 𝑎𝑔𝑒 ≤ 18 ∨ 𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 140 is true

true false true 𝑎𝑔𝑒 > 18 ∨ 𝑤𝑒𝑖𝑔ℎ𝑡 < 140 is true

true true true 𝑎𝑔𝑒 > 18 ∨ 𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 140 is true

EXERCISE

• Draw the truth table for exclusive or

(⊕)

• In exclusive or, the statement is true if

one and only one proposition is true. If

both are true, then the statement is

false.

𝒑𝟏 𝒑𝟐 𝒑𝟏⨁𝒑𝟐

false false ?

false true ?

true false ?

true true ?

TRUTH TABLE FOR OPERATOR ⊕

𝒑𝟏 𝒑𝟐 𝒑𝟏 ⊕𝒑𝟐 Example (assume age = 24, weight = 140)

false false false 𝑎𝑔𝑒 ≤ 18 ⊕ 𝑤𝑒𝑖𝑔ℎ𝑡 < 140 is false

false true true 𝑎𝑔𝑒 ≤ 18 ⊕ 𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 140 is true

true false true 𝑎𝑔𝑒 > 18 ⊕ 𝑤𝑒𝑖𝑔ℎ𝑡 < 140 is true

true true false 𝑎𝑔𝑒 > 18 ⊕ 𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 140 is false

EXAMPLE PROGRAM

• Here is a program that check division by 2 and 3, 2 or 3, and 2 or 3 exclusive

1. import java.util.Scanner;

2. public class TestBoolean {

3. public static void main(String[] args) {

4. Scanner s = new Scanner(System.in);

5. System.out.print("Enter a number: ");

6. int x = s.nextInt();

7.
8. boolean divBy2 = x % 2 == 0;

9. boolean divBy3 = x % 3 == 0;

10.
11. System.out.println(x + " divisible by 2 and 3: " + divBy2 && divBy3);

12. System.out.println(x + " divisible by 2 or 3: " + divBy2 || divBy3);

13. System.out.println(x + " divisible by 2 xor 3: " + divBy2 ^ divBy3);

14. }

15.}

Recall you can make combined statements like: (x % 2 == 0) && (x % 3 == 0)

EXERCISE

• Let a user enter a year, and output whether or not it is a leap year. A year is

a leap year if it is

• Divisible by 4 but not by 100

• OR

• Divisible by 400

• Do not use any if statements, only Boolean expressions

OPERATOR PRECEDENCE

1. () (expressions in parenthesis)

2. var++, var--

3. +, - (Unary plus and minus), ++var,--var

4. (type) Casting

5. ! (Not)

6. *, /, % (Multiplication, division, and remainder)

7. +, - (Binary addition and subtraction)

8. <, <=, >, >= (Relational operators)

9. ==, !=; (Equality)

10.^ (Exclusive OR)

11.&& (Conditional AND) Short-circuit AND

12.|| (Conditional OR) Short-circuit OR

13.=, +=, -=, *=, /=, %= (Assignment operator)

OPERATOR PRECEDENCE AND ASSOCIATIVITY

• The expression in the parentheses is evaluated first. (Parentheses can be

nested, in which case the expression in the inner parentheses is executed first.)

When evaluating an expression without parentheses, the operators are

applied according to the precedence rule and the associativity rule.

• If operators with the same precedence are next to each other, their

associativity determines the order of evaluation. All binary operators except

assignment operators are left-associative.

EXAMPLE

• Applying the operator precedence

and associativity rule, the expression

3 + 4 * 4 > 5 * (4 + 3) - 1 is

evaluated as follows:

3 + 4 * 4 > 5 * (4 + 3) - 1

3 + 4 * 4 > 5 * 7 – 1

3 + 16 > 5 * 7 – 1

3 + 16 > 35 – 1

19 > 35 – 1

19 > 34

false

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (5) subtraction

 (6) greater than

SELECTIONS
AKA CONDITIONALS

CONDITIONALS IN PSEUDOCODE

1.if 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then

2. Perform some operation

1.if 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then

2. Perform some operation

3.else

4. Perform some other operation

1.if 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 then

2. Perform some operation

3.else if 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 then

4. Perform some other operation

5. …

6.else

7. Perform final option of operation

ONE-WAY IF STATEMENTS IN JAVA

1. if (boolean-expression) {

2. statement(s);

3. }

1. if (radius >= 0) {

2. area = radius * radius * PI;

3. System.out.println("The area"

4. + " for the circle of radius "

5. + radius + " is " + area);

6. }

NOTE

• Parenthesis are required!

• Curly braces are optional ONLY FOR single statement blocks

 if i > 0 {
 System.out.println("i is positive");

}

(a) Wrong (b) Correct

if (i > 0) {

 System.out.println("i is positive");

}

 if (i > 0) {
 System.out.println("i is positive");

}

(a)

Equivalent

(b)

if (i > 0)

 System.out.println("i is positive");

THE TWO-WAY IF STATEMENT

1. if (boolean-expression) {

2. statement(s)-for-the-true-case;

3. }

4. else {

5. statement(s)-for-the-false-case;

6. }

IF-ELSE EXAMPLE

1.if (radius >= 0) {

2. area = radius * radius * 3.14159;

3. System.out.println(“The area for the ”

4. + “circle of radius ” + radius +

5. " is " + area);

6.}

7.else {

8. System.out.println("Negative input");

9.}

EXERCISE: GUESSING GAME

• Use Math.random() to generate a random number between 1 and 99:

(int)(Math.random()*99 + 1);

• Have a user guess the number. If the user is correct output a winning message,

otherwise output a losing message

• Lets solve together. Program along with me.

MULTIPLE ALTERNATIVE IF STATEMENTS

 if (score >= 90.0)
 System.out.print("A");

else

 if (score >= 80.0)

 System.out.print("B");

 else

 if (score >= 70.0)

 System.out.print("C");

 else

 if (score >= 60.0)

 System.out.print("D");

 else

 System.out.print("F");

 (a)

Equivalent

if (score >= 90.0)

 System.out.print("A");

else if (score >= 80.0)

 System.out.print("B");

else if (score >= 70.0)

 System.out.print("C");

else if (score >= 60.0)

 System.out.print("D");

else

 System.out.print("F");

(b)

This is better

Note the syntax for else-if statements

MULTI-WAY IF-ELSE STATEMENTS

TRACE IF-ELSE STATEMENT

1. if (score >= 90.0)

2. System.out.print("A");

3. else if (score >= 80.0)

4. System.out.print("B");

5. else if (score >= 70.0)

6. System.out.print("C");

7. else if (score >= 60.0)

8. System.out.print("D");

9. else

10. System.out.print("F");

Suppose score is 72.3

Condition is false

TRACE IF-ELSE STATEMENT

1. if (score >= 90.0)

2. System.out.print("A");

3. else if (score >= 80.0)

4. System.out.print("B");

5. else if (score >= 70.0)

6. System.out.print("C");

7. else if (score >= 60.0)

8. System.out.print("D");

9. else

10. System.out.print("F");

Suppose score is 72.3

Condition is false

TRACE IF-ELSE STATEMENT

1. if (score >= 90.0)

2. System.out.print("A");

3. else if (score >= 80.0)

4. System.out.print("B");

5. else if (score >= 70.0)

6. System.out.print("C");

7. else if (score >= 60.0)

8. System.out.print("D");

9. else

10. System.out.print("F");

Suppose score is 72.3

Condition is true

TRACE IF-ELSE STATEMENT

1. if (score >= 90.0)

2. System.out.print("A");

3. else if (score >= 80.0)

4. System.out.print("B");

5. else if (score >= 70.0)

6. System.out.print("C");

7. else if (score >= 60.0)

8. System.out.print("D");

9. else

10. System.out.print("F");

Suppose score is 72.3

Output “C”

TRACE IF-ELSE STATEMENT

1. if (score >= 90.0)

2. System.out.print("A");

3. else if (score >= 80.0)

4. System.out.print("B");

5. else if (score >= 70.0)

6. System.out.print("C");

7. else if (score >= 60.0)

8. System.out.print("D");

9. else

10. System.out.print("F");

Suppose score is 72.3

Exit the block

NOTE

• The else clause matches the most recent if clause in the same block.

NOTE, CONT.

• Nothing is printed from the preceding statement. To force the else clause to match the first if

clause, you must add a pair of curly braces:

1. int i = 1, j = 2, k = 3;

2.
3. if (i > j) {

4. if (i > k)

5. System.out.println("A");

6. }

7. else

8. System.out.println("B");

• This statement prints B.

COMMON ERRORS

• Adding a semicolon at the end of an if clause is a common mistake.

1. if (radius >= 0);

2. {

3. area = radius*radius*PI;

4. System.out.println(

5. "The area for the circle of radius " +

6. radius + " is " + area);

7. }

• This mistake is hard to find, because it is not a compilation error or a runtime error, it is a logic

error.

• This error often occurs when you use the next-line block style.

Wrong!

TIP

 if (number % 2 == 0)
 even = true;

else

 even = false;

(a)

Equivalent

boolean even

 = number % 2 == 0;

(b)

Hint 1: If you LIKE getting big points off of style. I recommend writing (a)!

Hint 2: Hint 1 is sarcasm…

CAUTION

if (even == true)

 System.out.println(

 "It is even.");

(a)

Equivalent if (even)

 System.out.println(

 "It is even.");

(b)

Hint 1: If you LIKE getting big points off of style. I recommend writing (a)!

Hint 2: Hint 1 is sarcasm…

EXERCISE: GUESSING GAME

• Extend the previous guessing game example to allow two guesses, and

descriptive messages of a guess being correct, over, or under.

• Hint: We have 3 conditions per guess…

ADVANCED CONDITIONALS

PROBLEM: COMPUTING TAXES

• The US federal personal income tax is calculated based on the filing status

and taxable income. There are four filing statuses: single filers, married filing

jointly, married filing separately, and head of household. The tax rates for

2009 are shown below.

PROBLEM: COMPUTING TAXES, CONT.

1. if (status == 0) {

2. // Compute tax for single filers

3. }

4. else if (status == 1) {

5. // Compute tax for married file jointly

6. // or qualifying widow(er)

7. }

8. else if (status == 2) {

9. // Compute tax for married file separately

10.}
11.else if (status == 3) {
12. // Compute tax for head of household

13.}
14.else {

15. // Display wrong status

16.}

SWITCH STATEMENTS

1. switch (status) {

2. case 0: //compute taxes for single filers;

3. break;

4. case 1: //compute taxes for married file jointly;

5. break;

6. case 2: //compute taxes for married file separately;

7. break;

8. case 3: //compute taxes for head of household;

9. break;

10. default: System.out.println(

11. "Errors: invalid status");

12. System.exit(1);

13. }

SWITCH STATEMENT FLOW CHART

SWITCH STATEMENT RULES

• The switch-expression must yield a value of char,

byte, short, or int type and must always be

enclosed in parentheses.

• The value, ..., and valueN must have the same data

type as the value of the switch-expression.

• The resulting statements in the case statement are

executed when the value in the case statement

matches the value of the switch-expression.

• Note that value1, ..., and valueN are constant

expressions, meaning that they cannot contain

variables in the expression, such as 1 + x.

1. switch (switch-expression) {

2. case value1: statement(s)1;

3. break;

4. case value2: statement(s)2;

5. break;

6. …

7. case valueN: statement(s)N;

8. break;

9. default: statement(s)-for-default;

10. }

SWITCH STATEMENT RULES

• The keyword break is optional, but it should be used at

the end of each case in order to terminate the remainder

of the switch statement. If the break statement is not

present, the next case statement will be executed.

• The default case, which is optional, can be used to

perform actions when none of the specified cases matches

the switch-expression.

• When the value in a case statement matches the value of

the switch-expression, the statements starting from this

case are executed until either a break statement or the

end of the switch statement is reached.

1. switch (switch-expression) {

2. case value1: statement(s)1;

3. break;

4. case value2: statement(s)2;

5. break;

6. …

7. case valueN: statement(s)N;

8. break;

9. default: statement(s)-for-default;

10. }

CONDITIONAL EXPRESSIONS

1.if (x > 0)

2. y = 1;

3.else
4. y = -1;

• is equivalent to a special ternary operator

• y = (x > 0) ? 1 : -1;

• (boolean-expression) ? expression1 : expression2;

