
INTERACTIVE LEARNING

• In this class, we will sometimes work in tandem between programming and

discussion

• If you get lost, I will have the programs written in the slides, or you can ask

• To facilitate:

• Make a new directory for the day

• Open sublime and the terminal and be ready to go

CHAPTER 2
ELEMENTARY PROGRAMMING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH

INTRODUCTION TO JAVA PROGRAMMING, LIANG (PEARSON 2014)

NEXT STEP IN PROGRAMMING

• Computations! Support for basic mathematics

• In pseudocode, we might write the following

• 𝑥 ← 0

• 𝑎 ← 𝜋𝑟2

• Here we make variables (store data) and give values (← means “gets”, note I

do not use “equals” in pseudocode)

EXAMPLE: COMPUTING THE AREA

1. public class ComputeArea {

2. public static void main(String[] args) {

3. double radius; // Declare radius

4. double area; // Declare area

5.
6. // Assign a radius

7. radius = 20; // New value is radius

8.
9. // Compute area

10. area = radius * radius * 3.14159;

11.
12. // Display results

13. System.out.println("The area for the circle of radius " +

14. radius + " is " + area);

15. }

16.}

TRACING

• Tracing is an activity used by computer scientists to follow a piece of code to

check correctness, find errors, etc

• We will learn how to trace programs and follow execution of code exactly as

a computer might

• But first, a note on memory

MEMORY

• Memory is storage for data and programs

• We will pretend that memory is an infinitely long piece of tape separated

into different cells

• Each cell has an address, i.e., a location, and a value

• In the computer these values are represented in binary (0s and 1s) and

addresses are located in hexadecimal (base 16, 0x)

0x0 0x1 0x2 0xA

… …x y z

EXAMPLE: COMPUTING THE AREA

1. public class ComputeArea {

2. public static void main(String[] args) {

3. double radius; // Declare radius

4. double area; // Declare area

5.
6. // Assign a radius

7. radius = 20; // New value is radius

8.
9. // Compute area

10. area = radius * radius * 3.14159;

11.
12. // Display results

13. System.out.println("The area for the circle of radius " +

14. radius + " is " + area);

15. }

16.}

Memory

radius

No value yet!

…

…

?0xA

…

?0xB

EXAMPLE: COMPUTING THE AREA

1. public class ComputeArea {

2. public static void main(String[] args) {

3. double radius; // Declare radius

4. double area; // Declare area

5.
6. // Assign a radius

7. radius = 20; // New value is radius

8.
9. // Compute area

10. area = radius * radius * 3.14159;

11.
12. // Display results

13. System.out.println("The area for the circle of radius " +

14. radius + " is " + area);

15. }

16.}

Memory

radius

area

…

…

?0xA

…

?0xB

EXAMPLE: COMPUTING THE AREA

1. public class ComputeArea {

2. public static void main(String[] args) {

3. double radius; // Declare radius

4. double area; // Declare area

5.
6. // Assign a radius

7. radius = 20; // New value is radius

8.
9. // Compute area

10. area = radius * radius * 3.14159;

11.
12. // Display results

13. System.out.println("The area for the circle of radius " +

14. radius + " is " + area);

15. }

16.}

Memory

radius

area

Special symbol =

means assignment, or

giving a value to a

variable

…

…

200xA

…

?0xB

EXAMPLE: COMPUTING THE AREA

1. public class ComputeArea {

2. public static void main(String[] args) {

3. double radius; // Declare radius

4. double area; // Declare area

5.
6. // Assign a radius

7. radius = 20; // New value is radius

8.
9. // Compute area

10. area = radius * radius * 3.14159;

11.
12. // Display results

13. System.out.println("The area for the circle of radius " +

14. radius + " is " + area);

15. }

16.}

Memory

radius

…

…

200xA

…

1256.6360xBarea

Certain symbols, e.g.,

*, compute new values.

It is like a calculator!

EXAMPLE: COMPUTING THE AREA

1. public class ComputeArea {

2. public static void main(String[] args) {

3. double radius; // Declare radius

4. double area; // Declare area

5.
6. // Assign a radius

7. radius = 20; // New value is radius

8.
9. // Compute area

10. area = radius * radius * 3.14159;

11.
12. // Display results

13. System.out.println("The area for the circle of radius " +

14. radius + " is " + area);

15. }

16.}

Memory

radius

…

…

200xA

…

1256.6360xBarea

Print values to terminal

READING INPUT FROM THE CONSOLE

1. import java.util.Scanner; //Tell java you want to use a Scanner

2. public class ComputeArea {

3. public static void main(String[] args) {

4. System.out.print(“Enter a radius: ”); //Message to “prompt” the user

5. Scanner in = new Scanner(System.in); //Scanner gathers input

6.
7. double radius = in.nextDouble(); // Declare radius and assign a new value is from user!

8.
9. double area = radius * radius * 3.14159; // Declare and Compute area

10.
11. System.out.println("The area for the circle of radius " +

12. radius + " is " + area); // Display results

13. }

14.}

• Use a Scanner to gather input from a user!

PROGRAMMING WITH DATA

THE DETAILS

HOLD ON A SEC!
I THOUGHT COMPUTERS WERE ALL 0'S AND 1'S?

0'S AND 1'S

• Yes, computers operate in 0's and 1's. So first off, javac (our compiler)

converts our text into commands of 0's and 1's the computer can understand

• java (executing) interprets the 0's and 1's

• Memory also stores entirely 0's and 1's

• So what we need to know is how computers

do this

INTEGER REPRESENTATION

• First, a look at our number system. It is base 10, meaning we use 10 different

symbols (the digits). Lets look at an example number: 1037.

• And adding we use carry-and-add

𝟏 𝟎 𝟑 𝟕

+ 0 0 4 9

1 0 8 6

1 0 3 7

103 = 1000 102 = 100 101 = 10 100 = 1

1 ∗ 103 + 0 ∗ 102 + 3 ∗ 101 + 7 ∗ 100 = 1037

INTEGER REPRESENTATION

• Synonymously, binary numbers work the same way. Except instead of base 10, it is

base 2. A digit can only be 0 or 1. Example: 0010 0101

• And adding 0010 1010 + 0000 0101

• Note there are other common number systems: Octal (base 8, digits 0-7) and

Hexadecimal (base 16, digits 0-9 and A-F, used for memory addresses)

𝟎 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 𝟏

+ 0 0 0 0 0 1 0 1

0 0 1 0 1 0 1 0

INTEGER REPRESENTATION

• By limiting the number of bits, we limit the expressiveness of the data type

• Means that if we only have 2 bits, we can only represent 4 numbers: 00, 01, 10, 11

• In programming, we must make conscious decisions about this otherwise there

can be severe consequences

NUMERICAL DATA TYPES

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed

 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754

 -3.4028235E+38 to -1.4E-45

 Positive range:

 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754

 -1.7976931348623157E+308 to -4.9E-324

 Positive range:

 4.9E-324 to 1.7976931348623157E+308

We will use int and double most

often in this class.

ACTIVITY

• With a partner

• Convert the binary number 1001 1001 to decimal

• Add the binary number 0101 0101 to 1001 1001 (DO NOT DO THIS IN

DECIMAL) and then convert to a decimal number

• Bonus: 0xA1 to decimal, add 0x0E to it and convert to decimal. Hint: 0x

means that the number is a hexadecimal (base 16)

VARIABLES AND NAMING

IDENTIFIERS (NAMES)

• An identifier is a sequence of characters that consist of letters, digits,

underscores (_), and dollar signs ($).

• An identifier must start with a letter, an underscore (_), or a dollar sign ($). It

cannot start with a digit.

• An identifier cannot be a reserved word. (See Appendix A, “Java Keywords,”

for a list of reserved words). An identifier cannot be true, false, or null.

• An identifier can be of any length.

DECLARING VARIABLES

• A variable is a named piece of data (memory). It stores a value!

• It has a type that defines how the memory is interpreted and what operations are

allowed

• A declaration states the existence of a variable for use in the program. It defines the

type and an identifier (name) for a variable.

• int x; // Declare x to be an integer variable

• double radius; // Declare radius to be a double variable

• char a; // Declare a to be a character variable

In pseudocode (just 𝑥, to say a variable) we often exclude the

type for numeric variables

ASSIGNMENT STATEMENTS

• Assignment statements give values to a variable

• The type defines what possible values are allowable

• x = 1; // Assign 1 to x;

• radius = 1.0; // Assign 1.0 to radius;

• a = 'A'; // Assign 'A' to a;

In contrast to pseudocode, java uses =, not ← for

assignment!

DECLARING AND INITIALIZING
IN ONE STEP

• Initialization is how we refer to the very first assignment of a variable’s value

• Declarations and initialization are allowed in one step

• int x = 1;

• double d = 1.4;

NAMED CONSTANTS

• Often, we need constants in programs, e.g., 𝜋. Use the keyword final to

specify a variable can ONLY be initialized.

• final double PI = 3.14159;

• final int SIZE = 3;

NAMING CONVENTIONS

• Choose meaningful and descriptive names.

• Variables and method names: Use lowercase. If the name consists of several

words, concatenate all in one, use lowercase for the first word, and capitalize

the first letter of each subsequent word in the name, called camelCasing.

• radius

• area

• computeArea

NAMING CONVENTIONS

• Class names: Capitalize the first letter of each word in the name

• ComputeArea.

• Constants: Capitalize all letters in constants, and use underscores to connect

words

• PI

• MAX_VALUE

LITERALS

• A literal is a constant value that appears directly in the program. For

example, 34, 1,000,000, and 5.0 are literals in the following statements:

• int i = 34;

• long x = 1000000;

• double d = 5.0;

INTEGER LITERALS

• An integer literal can be assigned to an integer variable as long as it can fit into the

variable. A compilation error would occur if the literal were too large for the

variable to hold. For example, the statement byte b = 1000 would cause a

compilation error, because 1000 cannot be stored in a variable of the byte type.

• An integer literal is assumed to be of the int type, whose value is between −231 (-

2147483648) to 231 − 1 (2147483647). To denote an integer literal of the long

type, append it with the letter L or l. L is preferred because l (lowercase L) can easily

be confused with 1 (the digit one).

FLOATING-POINT LITERALS

• Floating-point literals are written with a decimal point. By default, a floating-

point literal is treated as a double type value. For example, 5.0 is considered

a double value, not a float value. You can make a number a float by

appending the letter f or F, and make a number a double by appending the

letter d or D. For example, you can use 100.2f or 100.2F for a float number,

and 100.2d or 100.2D for a double number.

SCIENTIFIC NOTATION

• Floating-point literals can also be specified in scientific notation, for example,

1.23456e+2, same as 1.23456e2, is equivalent to 123.456, and 1.23456e-

2 is equivalent to 0.0123456. E (or e) represents an exponent and it can be

either in lowercase or uppercase.

READING NUMBERS FROM THE KEYBOARD

1.Scanner input =

new Scanner(System.in);

2.int value =

input.nextInt();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

EXPRESSIONS

NUMERIC OPERATORS

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

ARITHMETIC EXPRESSIONS

• Expressions are combinations of literals, variables, operations, and method

calls that generate new values

•
3+4𝑥

5
−

10 𝑦−5 𝑎+𝑏+𝑐

𝑥
+ 9

4

𝑥
+

9+𝑥

𝑦

• is translated to

• (3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

HOW TO EVALUATE AN EXPRESSION

• Though Java has its own way to

evaluate an expression behind the

scene, the result of a Java

expression and its corresponding

arithmetic expression are the same.

Therefore, you can safely apply the

arithmetic rules for evaluating a

Java expression.

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

EXERCISE

• Write a program to compute the average of three numbers

• Make the numbers integers to see what happens?

• Make the numbers floats to see what happens?

• Trace the execution in memory if the user enters 3, 5, 7

• Write a program to draw a circle based on user input!

INTEGERS
DIVISION

• Integers do not store decimals

• Division computes how many times a divisor evenly goes into a number

• Remainder (modulus) computes what is left over

• 5 / 2 yields an integer 2

• 5 % 2 yields 1 (the remainder of the division)

• Practice: What is 3456421 % 2? 25%3? 87%4?

FLOATING-POINT NUMBERS (DOUBLE)

• Calculations involving floating-point numbers are approximated because these

numbers are not stored with complete accuracy. For example,

• System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

• displays 0.5000000000000001, not 0.5, and

• System.out.println(1.0 - 0.9);

• displays 0.09999999999999998, not 0.1. Integers are stored precisely. Therefore,

calculations with integers yield a precise integer result.

DOUBLE VS. FLOAT

• The double type values are more accurate than the float type values. For

example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

displays 1.0F / 3.0F is 0.33333334

7 digits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

AUGMENTED ASSIGNMENT OPERATORS

INCREMENT AND
DECREMENT OPERATORS

INCREMENT AND
DECREMENT OPERATORS

int i = 10;

int newNum = 10 * i++;

int newNum = 10 * i;

i = i + 1;

Same effect as

int i = 10;

int newNum = 10 * (++i);

i = i + 1;

int newNum = 10 * i;

Same effect as

INCREMENT AND
DECREMENT OPERATORS

• Using increment and decrement operators makes expressions short, but it also

makes them complex and difficult to read. Avoid using these operators in

expressions that modify multiple variables, or the same variable for multiple

times such as this:

• int k = ++i + i++ - --i;

ASSIGNMENT EXPRESSIONS AND ASSIGNMENT
STATEMENTS

• variable = expression;

• variable op= expression; // Where op is +, -, *, /, or %

• ++variable; //preincrement

• variable++; //postincrement

• --variable; //predecrement

• variable--; //postdecrement

TYPE CONVERSION

NUMERIC TYPE CONVERSION

• Consider the following statements:

• int i = 5;

• double d = i;

• double f = i*d;

CONVERSION RULES

• When performing an operation involving two operands of different types,

Java can automatically converts the operand based on the following rules:

• 1. If one of the operands is double, the other is converted into double.

• 2. Otherwise, if one of the operands is float, the other is converted into

float.

• 3. Otherwise, if one of the operands is long, the other is converted into long.

• 4. Otherwise, both operands are converted into int.

TYPE CASTING

• Implicit casting is done when the range of the data increases, e.g., int to double.

Implicit means automatic by Java

• double d = 3; //type widening

• Explicit casting is done when the range of the data decreases, e.g., double to int.

Explicit must be stated by the programmer

• int i = (int)3.9; (type narrowing, fraction will be truncated not rounded!)

• What is wrong?

• int x = 5 / 2.0;

byte, short, int, long, float, double

range increases

TEMPORARIES – UNSEEN “VARIABLES”

• Temporarily computed values are also

stored in memory, but do not have a name

• Important to note – they have a type. It is

the type of the final result of the

(sub)expression

• Example

1. double x = 1.5;

2. int y = 2;

3. double z = y*y/3 + 1.5;

• Determine the type of each subcomponent

of the exression:

• y*y?

• y*y/3?

• y*y/3 + 1.5?

• Practice labeling the following for any line

of code: kind of (sub)statement, type of

(sub)expressions

EXERCISE

• Write a program to compute sales tax for a purchase.

• How could you alter your program to only store 2 decimal places? Try it!

COMMON ERRORS AND PITFALLS

• Common Error 1: Undeclared/Uninitialized/Unused Variables

• Common Error 2: Integer Overflow

• Common Error 3: Round-off Errors

• Common Error 4: Unintended Integer Division

• Common Pitfall 1: Redundant Input Objects

COMMON ERROR 1
UNDECLARED/UNINITIALIZED/UNUSED VARIABLES

double interestRate = 0.05;

double interest = interestrate * 45;

• Here, interestrate is undeclared to the compiler and interestRate

is unused. The programmer just made a “spelling” mistake!

• Following naming conventions help

COMMON ERROR 2
INTEGER OVERFLOW

int value = 2147483647 + 1;

// value will actually be -2147483648

COMMON ERROR 3
ROUND-OFF ERRORS

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

System.out.println(1.0 - 0.9);

COMMON ERROR 4
UNINTENDED INTEGER DIVISION

 int number1 = 1;
int number2 = 2;

double average = (number1 + number2) / 2;

System.out.println(average);

(a)

int number1 = 1;

int number2 = 2;

double average = (number1 + number2) / 2.0;

System.out.println(average);

(b)

COMMON PITFALL 1
REDUNDANT INPUT OBJECTS

1.Scanner input = new Scanner(System.in);

2.System.out.print("Enter an integer: ");

3.int v1 = input.nextInt();

4.

5.Scanner input1 = new Scanner(System.in);

6.System.out.print("Enter a double value: ");

7.double v2 = input1.nextDouble();

