
CMSC 150
INTRODUCTION TO COMPUTING
ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH INTRODUCTION TO JAVA PROGRAMMING, LIANG
(PEARSON 2014)

LECTURE 1

• INTRODUCTION TO COURSE

• COMPUTER SCIENCE

• HELLO WORLD

WELCOME

• Questions?

SYLLABUS

• Questions?

WHAT IS COMPUTER SCIENCE AND COMPUTING?

COMPUTER SCIENCE

• Your thoughts?

• Google: “The study of the principles and use of computers”

• Wikipedia: “The scientific and practical approach to computation and its applications”

• Dictionary.com: “The science that deals with the theory and methods of processing information

in digital computers, the design of computer hardware and software, and the applications of

computers”

• Edsgar Dijkstra: “Computer Science is no more about computers than astronomy is about

telescopes”

COMPUTER SCIENCE

• Study of algorithms

• Study of computing tools

• It is not just:

• Programming

• Microsoft office

• Typing

• Electronics

• Etc.

Input

Algorithm

Output

PROBLEM

• Work in pairs/triplets

• Create a methodology to perform some task, e.g.,

• Cook something

• Play a game

• Buy/sell on the stock market

• Put another way…tell a computer how to do this task

PROGRAMMING

• Even though computer science is not about

the computer, we still need to tell the

computer what to do!

• We do this through programming, or the

act of writing a computer program, known

as software – its just instructions to the

computer

• Programming allows us to push the

boundaries of science, view imaginary

worlds, and improve our daily lives!

PROGRAMMING

A BRIEF NOTE ON PROGRAMMING LANGUAGES

• Machine code – 0’s and 1’s…or simple commands. It is the set of primitive instructions built

into the computer’s architecture or circuits. Extremely tedious and error prone

• Assembly code – simple commands (ADD ra rb rc) to make programming easier to

understand. An assembler translates the commands to machine code. Extremely tedious but

less error prone.

• High level languages – English-like commands that allow programming to be less tedious, less

error prone, and much more expressive! Examples: Java, C++, Matlab, etc

• Why we don’t use Natural language (English) – Its ambiguous…which vs which or break vs

break or run vs run…ah the madness!!!!

COMPUTER ORGANIZATION
A SOFTWARE PERSPECTIVE

User

Application Programs

Operating System

• Manages all resources (memory, files, etc)

Hardware

COMPUTER ORGANIZATION
A HARDWARE PERSPECTIVE

Central Processing Unit

(CPU)

• Processes commands as 0’s and 1’s

• Performs arithmatic

• Requests (reads) and writes to/from

memory

Input

• Files

• Keyboard

• Mouse

• Etc.

Memory

• Data encoded as 0s and 1s

• Cache

• Random Access Memory (RAM)

• Hard drive

Output

• Monitor

• Force feedback

• Files

• Etc.

Bus

Objects

Methods Arrays

Control Flow

Math/String I/O

ExpressionsPrimitive data types

Any Program

HOW DO WE PROGRAM THE COMPUTER?

• We will use Java

• NOTE – This is an arbitrary choice. All languages build on the same basic building blocks

discussed in the course. So Java is merely the vessel to our exploration of computing!

• Specifically:

WHY JAVA?

• Java

• Widely used.

• Widely available.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs.

• Our study will

• Minimal subset of Java.

• Develop general programming skills that

are applicable to many languages.

• IT IS NOT ABOUT THE LANGUAGE!!!

“ There are only two kinds of programming

languages: those people always [gripe]

about and those nobody uses.”

– Bjarne Stroustrup

1.1 YOUR FIRST PROGRAM

HELLO WORLD

HelloWorld.java

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

• Compile: javac HelloWorld.java

• Run: java HelloWorld

COMPILING A HIGH LEVEL PROGRAM

Program

• In Java

Compiler (javac for us)

• Translation to another language

Machine Code

• Specific for an architecture

Execute Program (java
for us)

Output

Using a compiler

Program

• In Java

Interpreter

• Reads language directly

Execute Program

Output

Using an interpreter

SUBLIME TEXT AND TERMINAL

• In this class, we will exclusively use Sublime text editor to write programs and

use the terminal to compile and run our programs

• Log in

• Open a terminal

• Open sublime

TERMINAL REFERENCE GUIDE

• A terminal is a window to interact with your operating system through

commands. Things to know:

• You are always in a specific directory, called the current (or working) directory

• Filenames are specified “relative”ly – this means you have to be in the same directory or

refer to the location relative to your current directory

• Common commands (to move through folders and create them)

• pwd – print the current directory

• cd – change directory, e.g., cd Desktop

• ls – print everything in a directory

• mkdir – make a new directory, e.g., mkdir HelloWorldProject

HELLO WORLD

HelloWorld.java

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

• Compile: javac HelloWorld.java

• Run: java HelloWorld

ANATOMY OF A JAVA PROGRAM

• Class name

• Main method

• Statements

• Statement terminator

• Reserved words

• Comments

• Blocks

CLASS NAME

• Every Java program must have at least one class. Each class has a name. By

convention, class names start with an uppercase letter.

• A class defines an object, or entity, in your overall program. Early on we will only

have one, later in the semester we will work with many.

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

MAIN METHOD

• Line 2 defines the main method. In order to run a program, some class must contain

a method named main.

• The program is executed from the main method.

• Methods are subroutines meant to provide organization or package pieces for

repetition.

1.// This program prints Hello World!
2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

STATEMENT

• A statement represents an action or a sequence of actions.

• The statement System.out.println(“Welcome to Java!”) in the

program in Listing 1.1 is a statement to display the greeting “Welcome to Java!”.

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

STATEMENT TERMINATOR

• Every statement in Java ends with a semicolon (;).

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

RESERVED WORDS

• Reserved words or keywords are words that have a specific meaning to the

compiler and cannot be used for other purposes in the program. For example, when

the compiler sees the word class, it understands that the word after class is the name

for the class.

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

BLOCKS

• A pair of braces in a program forms a block that groups components of a

program.

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(“Hello World!");

5. }

6.}

Class Block

Method Block

SPECIAL SYMBOLS

Character Name Description

{}

()

[]

//

" "

;

Opening and closing

braces

Opening and closing

parentheses

Opening and closing

brackets

Double slashes

Opening and closing

quotation marks

Semicolon

Denotes a block to enclose statements.

Used with methods.

Denotes an array.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Marks the end of a statement.

ASIDE, ALGORITHMIC PSEUDOCODE

• In this class, we are learning the basic

tools to express and model algorithms

and software. We will learn not only

Java, but something called Pseudocode.

• Pseudocode is a detailed and stylized

description for program and algorithm

design. Often more natural than true

language

Java code Pseudocode

Does not run on a computer

Is not compiled, therefor ‘;’,
‘{}’, etc “don’t matter”

Can use math and natural
language

Stylized and easy to read

Runs on a computer

Generates compile errors
if done improperly

Can only use a restricted
subset of math and natural

language

Sometimes hard to read

ASIDE, ALGORITHMIC PSEUDOCODE

JAVA CODE

HelloWorld.java

1. // This program prints

2. // Hello World!

3. public class HelloWorld {

4. public static void

5. main(String[] args) {

6. System.out.println(

7. “Hello World!");

8. }

9. }

PSEUDOCODE

HelloWorld

1. // This algorithm prints

2. // Hello World!

3. Output(“Hello World”);

PROGRAMMING STYLE AND DOCUMENTATION

• Appropriate Comments

• Naming Conventions

• Proper Indentation and Spacing Lines

• Block Styles

APPROPRIATE COMMENTS

• Include a summary at the beginning of the program to explain what the

program does, its key features, its supporting data structures, and any unique

techniques it uses.

• Document each variable and method

• Include your name, and a brief description at the beginning of the program.

NAMING CONVENTIONS

• Choose meaningful and descriptive names.

• Class names:

• Capitalize the first letter of each word in the name, called CamelCasing. For example,

the class name ComputeExpression.

PROPER INDENTATION AND SPACING

• Indentation

• Indent two spaces.

• Spacing

• Use blank line to separate segments of the code.

BLOCK STYLES

• Use end-of-line style for braces.

public class Test

{

 public static void main(String[] args)

 {

 System.out.println("Block Styles");

 }

}

public class Test {

 public static void main(String[] args) {

 System.out.println("Block Styles");

 }

}

End-of-line

style

Next-line

style

PROGRAMMING ERRORS

• Syntax Errors

• Detected by the compiler

• Runtime Errors also called Exceptions

• Causes the program to abort

• Logic Errors

• Produces incorrect result

SYNTAX ERRORS

• Syntax errors are errors from incorrectly written Java code. The compiler (javac) tells you

these

• Anatomy of a compiler error:

filename.java:line_num: error: Confusing description of error

including code where it occurs.

• Deal with errors by experience, google, stack overflow, etc. After you have exhausted these

resources…piazza/ask me. Advice, always handle the first error…not the last one.

1. // This program prints Hello World!

2. public Class HelloWorld {

3. public static void main(String] args) {

4. System.out.println("Hello World!")

5.)

6. }

Can anyone spot the

syntax errors?

RUNTIME ERRORS

• Runtime errors occur from impossible commands encountered while executing the

program (with java)

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args) {

4. System.out.println(1/0)

5. }

6.}

LOGIC ERRORS

1.// This program prints Hello World!

2.public class HelloWorld {

3. public static void main(String[] args)

4. System.out.println(

5. "Celsius 35 is Fahrenheit degree ");

6. System.out.println((9 / 5) * 35 + 32);

7. }

8.}

HELLO GRAPHICS!

STANDARD DRAWING

• Standard drawing (StdDraw) is

library for producing graphical

output

library developed

for an introduction course

(not for broad usage!)

STANDARD DRAW

• Practice with StdDraw. To use: download StdDraw.java and put in working directory.

1.public class Triangle {

2. public static void main(String[] args) {

3. StdDraw.line(0.0, 0.0, 1.0, 0.0);

4. StdDraw.line(1.0, 0.0, 0.5, 0.866);

5. StdDraw.line(0.5, 0.866, 0.0, 0.0);

6. }

7.}
(0, 0) (1, 0)

(½, ½3)

SET SIZE OF WINDOW

• Use StdDraw.setCanvasSize(width, height)

• Width and height are integers representing pixels

This is the window

Width

Height

COORDINATE SYSTEM WITH STDDRAW

• Use StdDraw.setXscale(xmin, xmax) and

StdDraw.setYscale(ymin, ymax)

• xmin, xmax, ymin, and ymax are real numbers. Note the difference between pixels!

𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛

Default: 0, 0

(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥)
Default: 1, 1

This is the window

COLORS

• Change color with StdDraw.setPenColor(Color)

• Use StdDraw.BLACK, StdDraw.WHITE, StdDraw.BLUE, StdDraw.RED, etc

• Can define own colors with Java color library (uses RGB – Red, Green, Blue)

• import java.awt.Color; //put at top of file

• StdDraw.setPenColor(new Color(r, g, b));

SPECIAL EFFECTS

• Images. Put .gif, .png, or .jpg file in the working directory and use

StdDraw.picture() to draw it.

EXERCISES

1. Create a program to share three things about yourself. Please have each of

the items nicely formatted with multiple System.out.println() commands.

2. Write a program using StdDraw to show a wireframe of a cube. Try to use

different colors for the edges to show faces.

3. Work on Programming Assignment 1

