1. Sorting with a Priority Queue (PQ-sort) consists of performing \(n, \text{insert}(e) \) (number and type of PQ operations) PQ operations followed by \(n, \text{removeMin()} \) (number and type of PQ operations) PQ operations.

2. When a PQ is implemented with an unsorted sequence, the PQ-sort algorithm is referred to as \(\text{selection-sort} \) (a type of sorting algorithm) and runs in time \(O(n^2) \). In this case, the most expensive PQ operations are the \(\text{removeMin()} \) operations.

3. When a PQ is implemented with a sorted sequence, the PQ-sort algorithm is referred to as \(\text{insertion-sort} \) (a type of sorting algorithm) and runs in time \(O(n^2) \). In this case, the most expensive PQ operations are the \(\text{insert}(e) \) operations.

4. When a PQ is implemented with a heap, which is in turn realized by a vector-based structure of binary trees, the \(\text{insert}(e) \) operation takes time \(O(\log n) \) and the \(\text{removeMin()} \) operation takes time \(O(\log n) \). In this case, the PQ-sort algorithm is referred to as \(\text{heap-sort} \) (a type of sorting algorithm) and runs in time \(O(n \log n) \).